https://www.enterair.pl/slot-gacor/

К ПАТОГЕНЕЗУ НАРУШЕНИЙ В ГОЛОВНОМ МОЗГЕ ПРИ ХОЛЕСТАЗЕ

  • С. В. Емельянчик УО «Гродненский государственный университет им. Янки Купалы», Гродно, Беларусь
  • С. М. Зиматкин УО «Гродненский государственный медицинский университет», Гродно, Беларусь http://orcid.org/0000-0001-5728-2588
Ключевые слова: холестаз, головной мозг, патогенез

Аннотация

В обзоре литературы описаны механизмы нарушений головного мозга при холестазе у животных и человека. Показана роль билирубина, желчных кислот, окислительного стресса, эндотоксемии, ишемии и отёка мозга, повреждения митохондрий и эндоплазматической сети нервных клеток в патогенезе поражения головного мозга при холестазе.

Литература


1. Emelianchik, S. V. Mozg pri holestaze [The brain in cholestasis] : monograph / S. V. Emelianchik, S. M. Zimatkin. – Grodno : GrGY, 2011. – 272 р. (Russian)


2. Emelyanchik, S. V. Narusheniya v mozge pri holestaze i puti korrektsii [Disturbances in the brain with cholestasis and correction pathway] : monograph / S. V. Emelianchik, S. M. Zimatkin. – Grodno : GrSMU, 2016. – 224 p. (Russian)


3. Metabolism of polyamines and oxidative stress in the brain of cholestatic rats / S. F. Assimakopoulos [et al.] // Amino Acids. – 2010. – Vol. 38, No 3. – Р. 973-974.


4. Unconjugated bilirubin restricts oligodendrocyte differentiation and axonal myelination / A. Barateiro [et al.] // Mol. Neurobiol. – 2013. – Vol. 47, No 2. – Р. 632-644.


5. Dehydroepiandrosterone sulphate improves cholestasis-associated fatigue in bile duct ligated rats / R. F. Butterworth [et al.] // Neurogastroenterol. Motil. – 2009. – Vol. 21, No 12. – Р. 1319-1325.


6. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes / V. Calabrese [et al.] // Neurochem. Res. – 2007. – Vol. 32, No 4/5. – P. 757-773.


7. Castejón, O. J. Ultrastructural pathology of endothelial tight junctions in human brain oedema / O. J. Castejón // Folia Neuropathol. – 2012. – Vol. 50, No 2. – Р. 118-129.


8. Brain magnetic resonance in experimental acute-on-chronic liver failure / L. Chavarria et al. // Liver Int. – 2013. – Vol. 33, No 2. – P. 294-300.


9. Daood, M. J. Lipid peroxidation is not the primary mechanism of bilirubin-induced neurologic dysfunction in jaundiced Gunn rat pups / M. J. Daood, M. Hoyson, J. F. Watchko // Pediatr. Res. – 2012. – Vol. 72, No 5. – Р. 455-459.


10. Dhanda, S. Preventive effect of N-acetyl-L-cysteine on oxidative stress and cognitive impairment in hepatic encephalopathy following bile duct ligation / S. Dhanda, S. Kaur, R. Sandhir // Free Radic. Biol. Med. 2013. – Vol. 56. – P. 204-215.


11. Doré, S. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures / S. Doré, S. H. Snyder // Ann. N. Y. Acad. Sci. – 1999. – Vol. 890. – Р. 167-172.


12. Ewing, J. F. Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein / J. F. Ewing, S. N. Haber, M. D. Maines // J. Neurochem. – 1992. – Vol. 58, No 3. – P. 1140-1149.


13. Morphological evidence of the beneficial role of immune system cells in a rat model of surgical brain injury / М. Frontczak-Baniewicz [et al.] // Folia Neuropathol. – 2013. – Vol. 51, No 4. – Р. 324-332.


14. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups / S. Gazzin [et al.] // Pediatr. Res. – 2012. – Vol. 71, No 6. – 653-660.


15. Gazzin, S. Bilirubin-induced neurological damage / S. Gazzin, C. Tiribelli // J. Matern. Fetal. Neonatal. Med. – 2011. – Vol. 24, suppl. 1. – Р 154-155.


16. Protective effect of bilirubin in ischemia-reperfusion injury in the rat intestine / C. Hammerman [et al.] // J. Pediatr. Gastroenterol. Nutr. – 2002. – Vol. 35, No 3. – P. 344-349.


17. Hansen, T. W. Bilirubin oxidation in brain / T. W. Hansen // Mol. Genet. Metab. – 2000. – Vol. 71, No 1/2. – P. 411-417.18. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain / V. Keitel [et al.] // Glia. – 2010. – Vol. 58, No 15. – Р. 1794-1805.


19. Morphological changes in brain and heart after the temporary liver exclusion from the bloodstream during the cholestasis / L. A. Kikalishvili [et al.] // Georgian Med. News. – 2009. – No 167. – Р. 77-81.


20. Kondo, S. Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo / S. Kondo, S. Kohsaka, S. Okabe // Mol. Brain. – 2011. – Vol. 4, No 1. – Р. 27.


21. Lammert, F. Pathogenesis of gallstone formation / F. Lammert, T. Sauerbruch // Future perspectives in gastroenterology : 161 Falk Symp., Dresden (Germany), 11-12 oct. 2007 / Intern. Congr. Center. – Dresden, 2007. – P. 43.


22. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: implications for chronic brain disorders / S. H. Lin [et al.] // Glia. – 2015. – Vol. 63, No 7. – Р. 1270-1284.


23. Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver / S. G. Malik [et al.] // BMC Res. Notes. – 2010. – Vol. 9, No 3. – Р. 162.


24. Martich-Kriss, V. MR findings in kernicterus / V. Martich-Kriss, S. S. Kollias, W. S. Ball // Am. J. Neuroradiol. – 1995. – Vol. 16. – Р. 819-821.


25. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress / L. Muchova et al. // J. Cell Mol. Med. – 2011. – Vol. 15, No 5. – P. 1156-1165.


26. 24-hydroxycholesterol is a substrate for hepatic cholesterol 7alpha-hydroxylase (CYP7A) / M. Norlin [et al.] // J. Lipid Res. – 2000. – Vol. 41, No 10. – P. 1629-1639.


27. Bilirubin chemistry, ionization and solubilization by bile salts / J. D. Ostrow [et al.] // Hepatology. – 1984. – Vol. 4. – P. 38S-45S.


28. Molecular basis of bilirubin-induced neurotoxicity / J. D. Ostrow [et al.] // Trends Mol. Med. – 2004. – Vol. 10, No 2. – P. 65-70.


29. New concepts in bilirubin encephalopathy / J. D. Ostrow [et al.] // Eur. J. Clin. Invest. – 2003. – Vol. 33, No 11. – P. 988-997.


30. Elevated levels of bilirubin and long-term exposure impair human brain microvascular endothelial cell integrity / I. Palmela [et al.] // Curr. Neurovasc. Res. – 2011. – Vol. 8, No 2. – Р. 153-169.


31. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro stud / I. Palmela [et al.] // Front. Neurosci. – 2015. – Vol. 9. – Р. 80.


32. Oxidative stress – assassin behind the ischemic stroke / Н. Pradeep [et al.] // Folia Neuropathol. – 2012. – Vol. 50, No 3. – Р. 219-230.


33. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms / M. Quinn [et al.] // Dig. Liver Dis. – 2014. – Vol. 46, No 6. – Р. 527-534.


34. Morphological changes of rat astrocytes induced by liver damage but not by manganese chloride exposure / S. Rivera-Mancia [et al.] // Metab. Brain Dis. – 2009. – Vol. 24, No 2. – Р. 243-255.


35. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria / С. М. Rodrigues [et al.] // J. Hepatol. – 2002. – Vol. 36. – Р. 335-341.


36. Rose, J. Movement disorders due to bilirubin toxicity / J. Rose, R. Vassar // Semin. Fetal Neonatal. Med. – 2015. – Vol. 20, No 1. – Р. 20-25.


37. Normal cortical regional cerebral blood flow justifies the normal neuropsychological performance in patients with cholestatic liver disease / М. Senzolo [et al.] // Psychiatry Clin. Neurosci. – 2007. – Vol. 61, No 2. – Р. 209-210.


38. Quantitative multivoxel 1H MR spectroscopy of the brain in children with acute liver failure / P. E. Sijens [et al.] // Eur. Radiol. – 2008. – Vol. 18, No 11. – Р. 2601-2609.


39. Role of nuclear factor-κB activation in bilirubin-induced rat hippocampal neuronal apoptosis and the effect of TAT-NBD intervention / S. Song [et al.] // Nan Fang Yi Ke Da Xue Xue Bao. – 2013. – Vol. 33, No 2. – Р. 172-176.


40. Tan, L. Effects of high cholic acid on fetal brains of pregnant rats / L. Tan, Y. L. Ding // Zhonghua Fu Chan Ke Za Zhi. – 2007. – Vol. 42, No 12. – Р. 840-845.


41. Neuropathology of acute liver failure / K. K. Thumburu [et al.] // Neurochem. Int. – 2012. – Vol. 60, No 7. – Р. 672-675.


42. Bile acids content in brain of common duct ligated rats / V. Tripodi [et al.] // Ann. Hepatol. – 2012. – Vol. 11, No 6. – P. 930-934.


43. Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid / A. R. Vaz [et al.] // J. Neurochem. – 2010. – Vol. 112, No 1. – Р. 56-65.


44. Selective vulnerability of rat brain regions to unconjugated bilirubin / A. R. Vaz [et al.] // Mol. Cell Neurosci. – 2011. – Vol. 48, No 1. – Р. 82-93.


45. Vítek, L. Bilirubin chemistry and metabolism; harmful and protective aspects / L. Vítek, J. D. Ostrow // Curr. Pharm. Des. – 2009. – Vol. 15, No 25. – Р. 2869-2883.


46. Blood-brain barrier permeability is markedly decreased in cholestasis in the rat / J. B. Wahler [et al.] // Hepatology. – 1993. – Vol. 17, No 6. – P. 1103-1108.


47. The pharmacological features of bilirubin: the question of the century / F. Zahir [et al.] // Cell Mol. Biol. Lett. – 2015. – Vol. 20, No 3. – Р. 418-447.

Опубликован
2018-12-04
Как цитировать
1.
Емельянчик СВ, Зиматкин СМ. К ПАТОГЕНЕЗУ НАРУШЕНИЙ В ГОЛОВНОМ МОЗГЕ ПРИ ХОЛЕСТАЗЕ. journalHandG [Интернет]. 4 декабрь 2018 г. [цитируется по 21 январь 2025 г.];1(1):12-6. доступно на: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/4
https://stok.bte.co.id/pg/ https://coverage.bte.co.id/public/play/ https://lapor.bte.co.id/rungkat/ https://itj.jakartamrt.co.id/data/ https://dev.idcomm.id/wp-includes/IXR/slot-gacor/