https://www.enterair.pl/slot-gacor/

ABOUT PATHOGENESIS OF BRAIN DAMAGES IN CHOLESTASIS

  • S. V. Yemelyanchk Educational Institution “Yanka Kupala State University of Grodno”, Grodno, Belarus
  • S. M. Zimatkin Educational Institution “Grodno State Medical University” , Grodno, Belarus http://orcid.org/0000-0001-5728-2588
Keywords: cholestasis, brain damages, pathogenesis

Abstract

The literature review describes the mechanisms of brain damages in animal and human cholestasis. The role of bilirubin, bile acids, oxidative stress, endotoxemia, brain ischemia and edema, damaged mitochondria and endoplasmic reticulum of nerve cells in pathogenesis of brain disturbances in cholestasis is demonstrated.

References


1. Emelianchik, S. V. Mozg pri holestaze [The brain in cholestasis] : monograph / S. V. Emelianchik, S. M. Zimatkin. – Grodno : GrGY, 2011. – 272 р. (Russian)


2. Emelyanchik, S. V. Narusheniya v mozge pri holestaze i puti korrektsii [Disturbances in the brain with cholestasis and correction pathway] : monograph / S. V. Emelianchik, S. M. Zimatkin. – Grodno : GrSMU, 2016. – 224 p. (Russian)


3. Metabolism of polyamines and oxidative stress in the brain of cholestatic rats / S. F. Assimakopoulos [et al.] // Amino Acids. – 2010. – Vol. 38, No 3. – Р. 973-974.


4. Unconjugated bilirubin restricts oligodendrocyte differentiation and axonal myelination / A. Barateiro [et al.] // Mol. Neurobiol. – 2013. – Vol. 47, No 2. – Р. 632-644.


5. Dehydroepiandrosterone sulphate improves cholestasis-associated fatigue in bile duct ligated rats / R. F. Butterworth [et al.] // Neurogastroenterol. Motil. – 2009. – Vol. 21, No 12. – Р. 1319-1325.


6. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes / V. Calabrese [et al.] // Neurochem. Res. – 2007. – Vol. 32, No 4/5. – P. 757-773.


7. Castejón, O. J. Ultrastructural pathology of endothelial tight junctions in human brain oedema / O. J. Castejón // Folia Neuropathol. – 2012. – Vol. 50, No 2. – Р. 118-129.


8. Brain magnetic resonance in experimental acute-on-chronic liver failure / L. Chavarria et al. // Liver Int. – 2013. – Vol. 33, No 2. – P. 294-300.


9. Daood, M. J. Lipid peroxidation is not the primary mechanism of bilirubin-induced neurologic dysfunction in jaundiced Gunn rat pups / M. J. Daood, M. Hoyson, J. F. Watchko // Pediatr. Res. – 2012. – Vol. 72, No 5. – Р. 455-459.


10. Dhanda, S. Preventive effect of N-acetyl-L-cysteine on oxidative stress and cognitive impairment in hepatic encephalopathy following bile duct ligation / S. Dhanda, S. Kaur, R. Sandhir // Free Radic. Biol. Med. 2013. – Vol. 56. – P. 204-215.


11. Doré, S. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures / S. Doré, S. H. Snyder // Ann. N. Y. Acad. Sci. – 1999. – Vol. 890. – Р. 167-172.


12. Ewing, J. F. Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein / J. F. Ewing, S. N. Haber, M. D. Maines // J. Neurochem. – 1992. – Vol. 58, No 3. – P. 1140-1149.


13. Morphological evidence of the beneficial role of immune system cells in a rat model of surgical brain injury / М. Frontczak-Baniewicz [et al.] // Folia Neuropathol. – 2013. – Vol. 51, No 4. – Р. 324-332.


14. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups / S. Gazzin [et al.] // Pediatr. Res. – 2012. – Vol. 71, No 6. – 653-660.


15. Gazzin, S. Bilirubin-induced neurological damage / S. Gazzin, C. Tiribelli // J. Matern. Fetal. Neonatal. Med. – 2011. – Vol. 24, suppl. 1. – Р 154-155.


16. Protective effect of bilirubin in ischemia-reperfusion injury in the rat intestine / C. Hammerman [et al.] // J. Pediatr. Gastroenterol. Nutr. – 2002. – Vol. 35, No 3. – P. 344-349.


17. Hansen, T. W. Bilirubin oxidation in brain / T. W. Hansen // Mol. Genet. Metab. – 2000. – Vol. 71, No 1/2. – P. 411-417.18. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain / V. Keitel [et al.] // Glia. – 2010. – Vol. 58, No 15. – Р. 1794-1805.


19. Morphological changes in brain and heart after the temporary liver exclusion from the bloodstream during the cholestasis / L. A. Kikalishvili [et al.] // Georgian Med. News. – 2009. – No 167. – Р. 77-81.


20. Kondo, S. Long-term changes of spine dynamics and microglia after transient peripheral immune response triggered by LPS in vivo / S. Kondo, S. Kohsaka, S. Okabe // Mol. Brain. – 2011. – Vol. 4, No 1. – Р. 27.


21. Lammert, F. Pathogenesis of gallstone formation / F. Lammert, T. Sauerbruch // Future perspectives in gastroenterology : 161 Falk Symp., Dresden (Germany), 11-12 oct. 2007 / Intern. Congr. Center. – Dresden, 2007. – P. 43.


22. Heme oxygenase-1 modulates microRNA expression in cultured astroglia: implications for chronic brain disorders / S. H. Lin [et al.] // Glia. – 2015. – Vol. 63, No 7. – Р. 1270-1284.


23. Effect of bilirubin on cytochrome c oxidase activity of mitochondria from mouse brain and liver / S. G. Malik [et al.] // BMC Res. Notes. – 2010. – Vol. 9, No 3. – Р. 162.


24. Martich-Kriss, V. MR findings in kernicterus / V. Martich-Kriss, S. S. Kollias, W. S. Ball // Am. J. Neuroradiol. – 1995. – Vol. 16. – Р. 819-821.


25. Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress / L. Muchova et al. // J. Cell Mol. Med. – 2011. – Vol. 15, No 5. – P. 1156-1165.


26. 24-hydroxycholesterol is a substrate for hepatic cholesterol 7alpha-hydroxylase (CYP7A) / M. Norlin [et al.] // J. Lipid Res. – 2000. – Vol. 41, No 10. – P. 1629-1639.


27. Bilirubin chemistry, ionization and solubilization by bile salts / J. D. Ostrow [et al.] // Hepatology. – 1984. – Vol. 4. – P. 38S-45S.


28. Molecular basis of bilirubin-induced neurotoxicity / J. D. Ostrow [et al.] // Trends Mol. Med. – 2004. – Vol. 10, No 2. – P. 65-70.


29. New concepts in bilirubin encephalopathy / J. D. Ostrow [et al.] // Eur. J. Clin. Invest. – 2003. – Vol. 33, No 11. – P. 988-997.


30. Elevated levels of bilirubin and long-term exposure impair human brain microvascular endothelial cell integrity / I. Palmela [et al.] // Curr. Neurovasc. Res. – 2011. – Vol. 8, No 2. – Р. 153-169.


31. Hydrophilic bile acids protect human blood-brain barrier endothelial cells from disruption by unconjugated bilirubin: an in vitro stud / I. Palmela [et al.] // Front. Neurosci. – 2015. – Vol. 9. – Р. 80.


32. Oxidative stress – assassin behind the ischemic stroke / Н. Pradeep [et al.] // Folia Neuropathol. – 2012. – Vol. 50, No 3. – Р. 219-230.


33. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms / M. Quinn [et al.] // Dig. Liver Dis. – 2014. – Vol. 46, No 6. – Р. 527-534.


34. Morphological changes of rat astrocytes induced by liver damage but not by manganese chloride exposure / S. Rivera-Mancia [et al.] // Metab. Brain Dis. – 2009. – Vol. 24, No 2. – Р. 243-255.


35. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria / С. М. Rodrigues [et al.] // J. Hepatol. – 2002. – Vol. 36. – Р. 335-341.


36. Rose, J. Movement disorders due to bilirubin toxicity / J. Rose, R. Vassar // Semin. Fetal Neonatal. Med. – 2015. – Vol. 20, No 1. – Р. 20-25.


37. Normal cortical regional cerebral blood flow justifies the normal neuropsychological performance in patients with cholestatic liver disease / М. Senzolo [et al.] // Psychiatry Clin. Neurosci. – 2007. – Vol. 61, No 2. – Р. 209-210.


38. Quantitative multivoxel 1H MR spectroscopy of the brain in children with acute liver failure / P. E. Sijens [et al.] // Eur. Radiol. – 2008. – Vol. 18, No 11. – Р. 2601-2609.


39. Role of nuclear factor-κB activation in bilirubin-induced rat hippocampal neuronal apoptosis and the effect of TAT-NBD intervention / S. Song [et al.] // Nan Fang Yi Ke Da Xue Xue Bao. – 2013. – Vol. 33, No 2. – Р. 172-176.


40. Tan, L. Effects of high cholic acid on fetal brains of pregnant rats / L. Tan, Y. L. Ding // Zhonghua Fu Chan Ke Za Zhi. – 2007. – Vol. 42, No 12. – Р. 840-845.


41. Neuropathology of acute liver failure / K. K. Thumburu [et al.] // Neurochem. Int. – 2012. – Vol. 60, No 7. – Р. 672-675.


42. Bile acids content in brain of common duct ligated rats / V. Tripodi [et al.] // Ann. Hepatol. – 2012. – Vol. 11, No 6. – P. 930-934.


43. Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid / A. R. Vaz [et al.] // J. Neurochem. – 2010. – Vol. 112, No 1. – Р. 56-65.


44. Selective vulnerability of rat brain regions to unconjugated bilirubin / A. R. Vaz [et al.] // Mol. Cell Neurosci. – 2011. – Vol. 48, No 1. – Р. 82-93.


45. Vítek, L. Bilirubin chemistry and metabolism; harmful and protective aspects / L. Vítek, J. D. Ostrow // Curr. Pharm. Des. – 2009. – Vol. 15, No 25. – Р. 2869-2883.


46. Blood-brain barrier permeability is markedly decreased in cholestasis in the rat / J. B. Wahler [et al.] // Hepatology. – 1993. – Vol. 17, No 6. – P. 1103-1108.


47. The pharmacological features of bilirubin: the question of the century / F. Zahir [et al.] // Cell Mol. Biol. Lett. – 2015. – Vol. 20, No 3. – Р. 418-447.

Published
2018-12-04
How to Cite
1.
Yemelyanchk SV, Zimatkin SM. ABOUT PATHOGENESIS OF BRAIN DAMAGES IN CHOLESTASIS. journalHandG [Internet]. 2018Dec.4 [cited 2024Dec.22];1(1):12-6. Available from: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/4
https://stok.bte.co.id/pg/ https://coverage.bte.co.id/public/play/ https://lapor.bte.co.id/rungkat/ https://itj.jakartamrt.co.id/data/ https://dev.idcomm.id/wp-includes/IXR/slot-gacor/