https://www.enterair.pl/slot-gacor/

КЛЕТОЧНО-МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ФИБРОГЕНЕЗА ПЕЧЕНИ

  • Е. И. Лебедева Витебский государственный ордена Дружбы народов медицинский университет https://orcid.org/0000-0003-1309-4248
  • О. Д. Мяделец Витебский государственный ордена Дружбы народов медицинский университет https://orcid.org/0000-0002-6781-5584
Ключевые слова: печень, фиброгенез, клеточно-молекулярные механизмы, звездчатая клетка

Аннотация


Фиброз – ключевой патологический процесс в развитии всех хронических заболеваний печени. Исследования последних лет показали, что в развитии фиброгенеза печени задействованы многие типы клеток. Трансдифференцировка (активация) звездчатых клеток является центральным звеном фиброгенеза и представляет собой сложный, до конца не изученный процесс. Доклинические исследования выявили ряд мишеней для антифиброзных препаратов, но существует значительная задержка их применения в клинике. Препятствием при разработке новых препаратов является отсутствие чувствительных и специфических биомаркеров, необходимых для оценки лечения фиброза. Этим обусловлено пристальное внимание к клеточным и молекулярно-генетическим механизмам развития фиброза, которые на сегодняшний день до конца не известны ввиду сложной регуляции экспрессии сотен генов. Определение взаимодействия разных типов клеток в печени, выявление эффектов цитокинов, хемокинов и факторов роста на эти клетки, характеристика регуляторных механизмов, которые контролируют экспрессию генов, откроют новые терапевтические мишени в лечении фиброза печени.

Литература


1. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019;65:37-55. doi: 10.1016/j.mam.2018.09.002.


2. Puente A, Fortea JI, Cabezas J, Arias Loste MT, Iruzubieta P, Llerena S, Huelin P, Fаbrega E, Crespo J. LOXL2-A New Target in Antifibrogenic Therapy? Int. J. Mol. Sci. 2019;20(7):E1634. doi: 10.3390/ijms20071634.


3. Mallat A, Lotersztajn S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am J. Physiol. Cell Physiol. 2013;305(8):789-799. doi: 10.1152/ajpcell. 00230.2013.


4. Aydın MM, Akçalı KC. Liver fibrosis. Turk J. Gastroenterol. 2018;29(1):14-21. doi: 10.5152/tjg.2018.17330.


5. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv Rev. 2017;121:27-42. doi: 10.1016/j.addr.2017.05.007.


6. Hou W, Syn WK. Role of Metabolism in Hepatic Stellate Cell Activation and Fibrogenesis. Front Cell Dev. Biol. 2018;6:150. doi: 10.3389/fcell.2018.00150.


7. Barcena-Varela M, Colyn L, Fernandez-Barrena MG. Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. Int. J. Mol. Sci. 2019;20(10):2507. doi: 10.3390/ijms20102507.


8. D’Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA, Blaner WS. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One. 2011;6(9):e24993. doi: 10.1371 /journal.pone.0024993.


9. Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J. Gastroenterol. 2014;20(23):7260-7276. doi: 10.3748/wjg.v20.i23.7260.


10. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008;88(1):125-172. doi: 10.1152/physrev.00013.2007.


11. Bosselut N, Housset C, Marcelo P, Rey C, Burmester T, Vinh J, Vaubourdolle M, Cadoret A, Baudin B. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts. Proteomics. 2010;10(5):1017-1028. doi: 10.1002/pmic.200900257.


12. Asahina K. Hepatic stellate cell progenitor cells. J. Gastroenterol. Hepatol. 2012;27(Suppl 2):80-84. doi: 10.1111/j.1440-1746.2011.07001.x.


13. Wu N, McDaniel K, Zhou T, Ramos-Lorenzo S, Wu C, Huang L, Chen D, Annable T, Francis H, Glaser S, Alpini G, Meng F. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. Am. J. Physiol. Gastrointest Liver Physiol. 2018;315(3):G385-G398. doi: 10.1152/ajpgi.00111.2018.


14. Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J. Dig. Dis. 2018;10(3):133-148. doi: 10.15171/mejdd.2018.103.


15. Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology. 2010;51(4):1438-1444. doi: 10.1002/hep.23405.


16. Strieter RM, Keeley EC, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am. Clin. Climatol Assoc. 2009;120:49-59.


17. Yovchev MI, Zhang J, Neufeld DS, Grozdanov PN, Dabeva MD. Thymus cell antigen-1-expressing cells in the oval cell compartment. Hepatology. 2009;50(2):601-611. doi: 10.1002/hep.23012.


18. Strieter RM, Keeley EC, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am. Clin. Climatol Assoc. 2009;120:49-59.


19. Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher M, Brenner DA. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology. 2010;51(3):1027-1036. doi: 10.1002/hep.23368.


20. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 2012;18(7):1028-1040. doi: 10.1038/nm.2807.


21. Malik AI, Williams A, Lemieux CL, White PA, Yauk CL. Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo (a) pyrene that elicit DNA damage and mutation. Environ Mol. Mutagen. 2012;53(1):10-21. doi: 10.1002/em.20668.


22. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 2012;18(7):1028-1040. doi: 10.1038/nm.2807.


23. Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front. Genet. 2019;10:626. doi: 10.3389/fgene.2019.00626.


24. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505(7481):97-102. doi: 10.1038/nature12681.


25. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis – current status and future directions. J. Hepatol. 2014;61(4):912-924. doi: 10.1016/j.jhep.2014.05.047.


26. Soini T, Pihlajoki M, Andersson N, Lohi J, Huppert KA, Rudnick DA, Huppert SS, Wilson DB, Pakarinen MP, Heikinheimo M. Transcription factor GATA6: a novel marker and putative inducer of ductal metaplasia in biliary atresia. Am J. Physiol. Gastrointest. Liver Physiol. 2018;314(5):G547-G558. doi: 10.1152/ajpgi.00362.2017.


27. Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, Soderblom E, Thompson JW, Mayer-Salman M, Himburg HA, Moylan CA, Guy CD, Garman KS, Premont RT, Chute JP, Diehl AM. Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liverprogenitor niches. Gut. 2016;65(4):683-692. doi: 10.1136/gutjnl-2014-308176.


28. Tacke F. Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Exp. Ther. Med. 2019;17(5):3835-3847. doi: 10.1186/1755-1536-5-S1-S27.


29. Sun YY, Li XF, Meng XM, Huang C, Zhang L, Li J. Macrophage Phenotype in Liver Injury and Repair. Scand J. Immunol. 2017;85(3):166-174. doi: 10.1111/sji.12468.


30. Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, Lotersztajn S, Pavoine C. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59(1):130-142. doi: 10.1002/hep.26607.


31. Dey A, Allen J, Hankey-Giblin PA. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front. Immunol. 2015;5:683. doi: 10.3389/fimmu.2014.00683.


32. Lokhonina A, Elchaninov A, Fatkhudinov T, Makarov A, Arutyunyan I, Grinberg M, Glinkina V, Surovtsev V, Bolshakova G, Goldshtein D, Sukhikh G. Activated Macrophages of Monocytic Origin Predominantly Express Proinflammatory Cytokine Genes, Whereas Kupffer Cells Predominantly Express Anti-Inflammatory Cytokine Genes. Biomed. Res. Int. 2019;2019:1-13. doi: 10.1155/2019/3912142.


33. Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, Fu L, Tian C, Yang J, He F, Tang L. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun. 2019;10(1):1076. doi: 10.1038/s41467-019-09046-8.


34. Bartneck M, Schrammen PL, Möckel D, Govaere O, Liepelt A, Krenkel O, Ergen C, McCain MV, Eulberg D, Luedde T, Trautwein C, Kiessling F, Reeves H, Lammers T, Tacke F. The CCR2+ Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers. Cell Mol. Gastroenterol. Hepatol. 2019;7(2):371-390. doi: 10.1016/j.jcmgh.2018.10.007.


35. Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat. Med. 2013;19(7):859-868. doi: 10.1038/nm.3251.


36. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology. 2006;130(2):435-452.


37. Zhan Z, Chen Y, Duan Y, Li L, Mew K, Hu P, Ren H, Peng M. Identification of key genes, pathways and potential therapeutic agents for liver fibrosis using an integrated bioinformatics analysis. Peer J. 2019;7:e6645. doi: 10.7717/peerj.6645.


38. Ghatak S, Biswas A, Dhali GK, Chowdhury A, Boyer JL, Santra A. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicol. Appl. Pharmacol. 2011;251(1):59-69. doi: 10.1016/j.taap.2010.11.016.


39. Liu T, Wang P, Cong M, Xu Y, Jia J, You H. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism. Biosci. Rep. 2013;33(3):e00041. doi: 10.1042/BSR20130033.


40. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830-841. doi: 10.1136/gutjnl-2014-306842.


41. Huebener P, Schwabe RF. Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim. Biophys. Acta. 2013;1832(7):1005-1017. doi: 10.1016/j.bbadis.2012.11.017.


42. Li J, Wang FP, She WM, Yang CQ, Li L, Tu CT, Wang JY, Jiang W. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J. Viral. Hepat. 2014;21(2):129-140. doi: 10.1111/jvh.12152.


43. Liu C, Chen X, Yang L, Kisseleva T, Brenner DA, Seki E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J. Biol. Chem. 2014;289(10):7082-7091. doi: 10.1074/jbc.M113.543769.


44. Yoshida K, Matsuzaki K. Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries. Front. Physiol. 2012;3:53. doi: 10.3389/fphys.2012.00053.


45. Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends. Immunol. 2010;31(6):220-227. doi: 10.1016/j.it.2010.04.002.


46. Yi HS, Lee YS, Byun JS, Seo W, Jeong JM, Park O, Duester G, Haseba T, Kim SC, Park KG, Gao B, Jeong WI. Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice. Hepatology. 2014;60(3):1044-1053. doi: 10.1002/hep.27137.


47. Mallat A, Teixeira-Clerc F, Lotersztajn S. Cannabinoid signaling and liver therapeutics. J. Hepatol. 2013;59(4):891-896. doi: 10.1016/j.jhep.2013.03.032.


48. Liu Y, Jin L, Lou P, Gu Y, Li M, Li X. Dynamic microRNAome profiles in the developing porcine liver. Biosci. Biotechnol. Biochem. 2017;81(1):127-134.


49. Amr KS, Elmawgoud Atia HA, Elazeem Elbnhawy RA, Ezzat WM. Early diagnostic evaluation of miR-122 and miR-224 as biomarkers for hepatocellular carcinoma. Genes Dis. 2017;4(4):215-221. doi: 10.1016/j.gendis.2017.10.003.


50. Calvente CJ, Tameda M, Johnson CD, Del Pilar H, Lin YC, Adronikou N, De Mollerat Du Jeu X, Llorente C, Boyer J, Feldstein AE. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J. Clin. Invest. 2019;130:4091-4109. doi: 10.1172/JCI122258.

Опубликован
2019-12-12
Как цитировать
1.
Лебедева ЕИ, Мяделец ОД. КЛЕТОЧНО-МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ФИБРОГЕНЕЗА ПЕЧЕНИ. journalHandG [Интернет]. 12 декабрь 2019 г. [цитируется по 20 апрель 2024 г.];3(2):119-26. доступно на: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/110
slot demo gratisslot gacor gampang menangSLOT DEMOslot pulsahttps://e-learning.iainponorogo.ac.id/thai/https://organisasi.palembang.go.id/userfiles/images/https://lms.binawan.ac.id/terbaik/slot gacor maxwinslot gacor 2024slot gacor terbaikslot gacor hari inihttp://ti.lab.gunadarma.ac.id/jobe/runguard/https://satudata.kemenpora.go.id/uploads/demo/