MECHANISMS AND MARKERS OF ACUTE MULTI-WALLED CARBON NANOTUBES-INDUCED INTOXICATION IN RATS
Abstract
Background. Being the products of modern nanomanufacturing carbon nanotubes exhibit high surface reactivity, outstanding chemical, optical, and electrical properties, as well as high toxicity. Objective. To determine the effects and markers of carbon nanoparticle – induced intoxication in experimental rats, liver mitochondria being the main target of the exposure. Material and methods. Acute intoxication in rats was induced by a single injection of multilayer carbon nanotubes (diameter 50–90 nm) at a dosage of 50 mg/kg. We measured bilirubin and aminotransferase blood plasma levels, oxidative stress level, respiratory activity as well as membrane potential of rat liver mitochondria. Results. We did not reveal significantly elevated blood plasma levels of liver damage markers (bilirubin and aminotransferase activity levels), but detected erythrocyte oxidative stress due to carbon nanotube–induced intoxication. The toxic effect did not change the respiratory activity and membrane potential of rat liver mitochondria. Conclusion. Acute toxic effect of nanoparticles did not cause elevation either in blood plasma levels of liver damage markers or of the activity of liver mitochondria, but increased the sensitivity of mitochondria to calcium ions. It can be assumed that large hydrophobic carbon nanotubes are not readily absorbed and distributed in tissues after single administration in rats.
References
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci. 2022;23(14):7962. https://doi.org/10.3390/ijms23147962.
Mariam J, Sivakami S, Dongre PM. Albumin corona on nanoparticles – a strategic approach in drug delivery. Drug delivery. 2016;23(8):2668-2676. https://doi.org/10.3109/10717544.2015.1048488.
Gurunathan S, Jeyaraj M, La H, Yoo H, Choi Y, Do JT, Park C, Kim JH, Hong K. Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells. Int J Mol Sci. 2020;21(2):440. https://doi.org/10.3390/ijms21020440.
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials (Basel). 2015;5(3):1163-1180. https://doi.org/10.3390/nano5031163.
Deweirdt J, Quignard JF, Lacomme S, Gontier E, Mornet S, Savineau JP, Marthan R, Guibert C, Baudrimont I. In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: effects on calcium signaling and mitochondrial alterations. Arch Toxicol. 2020;94(7):2331-2348. https://doi.org/10.1007/s00204-020-02764-9.
Burnett M, Abuetabh Y, Wronski A, Shen F, Persad S, Leng R, Eisenstat D, Sergi C. Graphene Oxide Nanoparticles Induce Apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out Osteosarcoma Cells. J Cancer. 2020;11(17):5007-5023. https://doi.org/10.7150/jca.46464.
Rakov JeG. Nanotrubki i fullereny. Moskva: Logos; 2006. Chap. 3, Uglerodnye nanotrubki; р. 91-119. (Russian).
Gmoshinskij IV, Hotimchenko SA, Riger N, Nikitjuk DB. Uglerodnye nanotrubki: mehanizmy dejstvija, biologicheskie markery i ocenka toksichnosti in vivo (obzor literatury) [Carbon nanotubes: mechanisms of the action, biological markers and evaluation of the (review of literature)]. Gigiena i sanitarija [Hygiene and Sanitation]. 2017;96(2):176-186. https://doi.org/10.18821/0016-9900-2017-96-2-176-186. (Russian).
Johnson D, Lardy HA. Isolation of liver or kidney mitochondria. Methods in Enzymology. 1967;10:94-96. https://doi.org/10.1016/0076-6879(67)10018-9.
Akerman KE, Wikström MK. Safranine as a probe of the mitochondrial membrane potential. FEBS letters. 1976;68(2):191-197. https://doi.org/10.1016/0014-5793(76)80434-6.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
Stocks J, Dormandy TL. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971;20(1):95-111. https://doi.org/10.1111/j.1365-2141.1971.tb00790.x.
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77. https://doi.org/10.1016/0003-9861(59)90090-6.
Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010;4(3):1481-1492. https://doi.org/10.1021/nn901573w.
Hripach LV, Rahmanin JuA, Mihajlova RI, Knjazeva TD, Koganova ZI, Zheleznjak EV, Savostikova ON, Alekseeva AV, Ryzhova IN, Kruglova EV, Revazova TL. Vlijanie uglerodnyh nanotrubok i aktivirovannogo uglja na biohimicheskie pokazateli sostojanija organizma pri hronicheskom vvedenii preparatov krysam s pitevoj vodoj [Chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats]. Gigiena i sanitarija [Hygiene and Sanitation]. 2014;93(5):36-42. https://doi.org/10.47470/0016-9900-2018-97-11-1122-6. (Russian).
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49. https://doi.org/10.1002/smll.200700595.
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. Sci Total Environ. 2022;823:153629. https://doi.org/10.1016/j.scitotenv.2022.153629.