https://www.enterair.pl/slot-gacor/

РОЛЬ ГАЗОТРАНСМИТТЕРОВ (NO И H2S) В МЕХАНИЗМАХ ЗАЩИТЫ ОТ ПОСТИШЕМИЧЕСКИХ НАРУШЕНИЙ ПЕЧЕНИ

  • М. Н. Ходосовский УО «Гродненский государственный медицинский университет»
Ключевые слова: печень, ишемия-реперфузия, газотрансмиттеры, кислородтранспортная функция, прооксидантно-антиоксидантный баланс

Аннотация

Постишемические нарушения печени встречаются в клинической практике при выполнении трансплантации, резекции или травмах органа, когда возникает необходимость окклюзии афферентных сосудов.
Цель обзора – анализ литературных и собственных данных о роли газотрансмиттеров NO и H2S в механизмах современных способов защиты печени при синдроме ее ишемии-реперфузии.

Литература


1. Zhang Y, Shen Q, Liu Y, Chen H, Zheng X, Xie S, Ji H, Zheng S. Hepatic Ischemic Preconditioning Alleviates Ischemia-Reperfusion Injury by Decreasing TIM4 Expression. Int. J. Biol. Sci. 2018;14(10):1186-1195. doi: 10.7150/ijbs.24898.


2. Guan LY, Fu PY, Li PD, Li ZN, Liu HY, Xin MG, Li W. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J. Gastrointest. Surg. 2014;6(7):122-128. doi: 10.4240/wjgs.v6.i7.122.


3. Hu XX, Fu L, Li Y, Lin ZB, Liu X, Wang JF, Chen YX, Wang ZP, Zhang X, Ou ZJ, Ou JS. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice. PLoS One. 2015;10(9):e0137405. doi: 10.1371/journal.pone.0137405.


4. Olson KR. Hydrogen sulfide as an oxygen sensor. Antioxid. Redox Signal. 2015;22(5):377-397. doi: 10.1089/ars.2014.5930.


5. Kolluru GK, Shen X, Yuan S, Kevil CG. Gasotransmitter Heterocellular Signaling. Antioxid. Redox Signal. 2017;26(16):936-960. doi: 10.1089/ars.2016.6909.


6. Wang R. The gasotransmitter role of hydrogen sulfide. Antioxid. Redox Signal. 2003;5(4):493-501. doi: 10.1089/152308603768295249.


7. Reiniers MJ, van Golen RF, van Gulik TM, Heger M. Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid. Redox Signal. 2014;21(7):1119-1142. doi: 10.1089/ars.2013.5486.


8. Khodosovsky MN, Zinchuk VV. Vlijanie nitroglicerina na prooksidantno-antioksidantnyj balans i funkcionalnoe sostojanie pecheni pri ishemii-reperfuzii [Effect of nitroglycerine on some parameters of the prooxidant-antioxidant balance and functional state of the liver during ischemia/reperfusion]. Bjulleten jeksperimentalnoj biologii i mediciny [Bulletin of Experimental Biology and Medicine]. 2006;149(12):631-634. (Russian).


9. Khodosovsky MN. Vlijanie nitroprussida natrija na prooksidantno-antioksidantnuju sistemu pecheni pri ee ishemii-reperfuzii u krolikov [Effect of sodium nitroprusside on the prooxidant-antioxidant system of the rabbit liver under ischemia-reperfusion]. Vesci Nacyjanalaj akadjemii navuk Belarusi. Seryja medycynskih navuk [Proceedings of the National Academy of Sciences of Belarus: Medicine series]. 2008;5(3):23-27. (Russian).


10. Bibli SI, Papapetropoulos A, Iliodromitis EK, Daiber A, Randriamboavonjy V, Steven S, Brouckaert P, Chatzianastasiou A, Kypreos KE, Hausenloy DJ, Fleming I, Andreadou I. Nitroglycerin limits infarct size through S-nitrosation of Cyclophilin D: A novel mechanism for an old drug. Cardiovasc. Res. 2019;115(3):625-636. doi: 10.1093/cvr/cvy222.


11. Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway - evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int. 2012;32(4):531-543. doi: 10.1111/j.1478-3231.2012.02755.x.


12. Diamond JM, Porteous MK, Roberts LJ, Wickersham N, Rushefski M, Kawut SM, Shah RJ, Cantu E, Lederer DJ, Chatterjee S, Lama VN, Bhorade S, Crespo M, McDyer J, Wille K, Orens J, Weinacker A, Arcasoy S, Shah PD, Wilkes DS, Hage C, Palmer SM, Snyder L, Calfee CS, Ware LB. The relationship between plasma lipid peroxidation products and primary graft dysfunction after lung transplantation is modified by donor smoking and reperfusion hyperoxia. J. Heart Lung Transplant. 2016;35(4):500-507. doi: 10.1016/j.healun.2015.12.012.


13. Malte H, Lykkeboe G. The Bohr/Haldane effect: a model-based uncovering of the full extent of its impact on O2 delivery to and CO2 removal from tissues. J. Appl. Physiol. 2018;125(3):916-922. doi: 10.1152/japplphysiol.00140.


14. Yang SL, Chen LJ, Kong Y, Xu D, Lou YJ. Sodium nitroprusside regulates mRNA expressions of LTC4 synthesis enzymes in hepatic ischemia/reperfusion injury rats via NFkappaB signaling pathway. Pharmacology. 2007;80(1):11-20. doi: 10.1159/000102595.


15. Go KL, Lee S, Zendejas I, Behrns KE, Kim JS. Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury. Biomed. Res. Int. 2015;2015:183469. doi: 10.1155/2015/183469.


16. Zaouali MA, Ben Mosbah I, Boncompagni E, Ben Abdennebi H, Mitjavila MT, Bartrons R, Freitas I, Rimola A, Rosellу-Catafau J. Hypoxia inducible factor-1alpha accumulation in steatotic liver preservation: role of nitric oxide. World J. Gastroenterol. 2010;16(28):3499-3509.


17. Zhang YQ, Ding N, Zeng YF, Xiang YY, Yang MW, Hong FF, Yang SL. New progress in roles of nitric oxide during hepatic ischemia reperfusion injury. World J. Gastroenterol. 2017;23(14):2505-2510. doi: 10.3748/wjg.v23.i14.505.


18. Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J. Endocrinol. 2016;229(3):R129-146. doi: 10.1530/JOE-16-0117.


19. Khodosovsky MN, Zinchuk VV. Rol NO-zavisimyh mehanizmov v realizacii antioksidantnyh jeffektov melatonina pri ishemii-reperfuzii pecheni [The role of NO-dependent mechanisms in melatonin antioxidant activity during hepatic ischemia-reperfusion in rats]. Jeksperimentalnaja i klinicheskaja farmakologija [Experimental and Clinical Pharmacology]. 2014;77(6):33-38. (Russian).


20. Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: A review. J. Cell. Physiol. 2018;233(5):4015-4032. doi: 10.1002/jcp.26209.


21. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal. Res. 2007;42(1):28-42. doi: 10.1111/j.1600-079X.2006.00407.x.


22. Mathes AM. Hepatoprotective actions of melatonin: possible mediation by melatonin receptors. World J. Gastroenterol. 2010;16(48):6087-6097. doi: 10.3748/wjg.v16.i48.6087.


23. Ma Z, Xin Z, Di W, Yan X, Li X, Reiter RJ, Yang Y. Melatonin and mitochondrial function during ischemia/reperfusion injury. Cell. Mol. Life Sci. 2017;74(21):3989-3998. doi: 10.1007/s00018-017-2618-6.


24. Yang C, Talukder MA, Varadharaj S, Velayutham M, Zweier JL. Early ischaemic preconditioning requires Akt- and PKAmediated activation of eNOS via serine1176 phosphorylation. Cardiovasc. Res. 2013;97(1):33-43. doi: 10.1093/cvr/cvs287.


25. Naryzhnaja NV, Maslov LN. Rol sintazy oksida azota v realizacii rannej (pervoj) fazy ishemicheskogo prekondicionirovanija miokarda. [Involvement of nitric oxide cynthase in the early phase of the heart ischemic preconditioning]. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. [Russian Journal of Physiology]. 2016;102(7):792-806. (Russian).


26. Khodosovsky MN. Rol kislorodtransportnoj funkcii krovi v mehanizme protektivnogo dejstvija ishemicheskogo prekondicionirovanija na pechen [The role of the blood oxygen in protective mechanism of ischemic preconditioning during hepatic ischemia-reperfusion]. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova [Russian Journal of Physiology]. 2016;102(8):940-51. (Russian).


27. Khodosovsky MN, Zinchuk VV. Rol kislorodtransportnoj funkcii krovi v realizacii NO-zavisimyh jeffektov ishemicheskogo prekondicionirovanija pri reperfuzii pecheni [The role of blood oxygen transport in the NO-dependent effects of ischemic preconditioning during liver reperfusion]. Novosti mediko-biologicheskih nauk [News of biomedical sciences]. 2017;3:131-136. (Russian).


28. Bonaventura C, Henkens R, Alayash AI, Banerjee S, Crumbliss AL. Molecular controls of the oxygenation and redox reactions of hemoglobin. Antioxid. Redox Signal. 2013;18(17):2298-2313. doi: 10.1089/ars.2012.4947.


29. Bilenko MV. Ishemicheskie i reperfuzionnye povrezhdenija organov [Ischemic and reperfusion injuries of organs]. Moskva: Medicina; 1989. 267 p. (Russian).


30. Moncada PS. Nitric Oxide And Oxygen: Actions And Interactions In Health And Disease. Redox Biol. 2015;5:421. doi: 10.1016/j.redox.2015.09.034.


31. Glanemann M, Vollmar B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redox-state. J. Hepatol. 2003;38(1):59-66.


32. Alchera E, Dal Ponte C, Imarisio C, Albano E, Carini R. Molecular mechanisms of liver preconditioning. World J. Gastroenterol. 2010;16(48):6058-6067.


33. Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J. Cell. Biochem. 2015;116(5):696-703.


34. Ulashhik VS. Sovremennye predstavlenija o biologicheskoj roli jendogennogo serovodoroda [Current understanding of endogenous hydrogen sulfide biological role]. Zdravoohranenie [Healthcare]. 2012;1:42-48. (Russian).


35. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996;16(3):1066-1071.


36. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322(5901):587-590. doi: 10.1126/science.1162667.


37. Petrova IV, Trubacheva OA, Mangataeva OS, Suslova TE, Kovalev IV, Gusakova SV. Vlijanie serovodoroda na kollagen- inducirovannuju agregaciju trombocitov cheloveka [The influence of hydrogen sulfide on collagen-induced aggregation of human platelets]. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova [Russian Journal of Physiology]. 2015;101(10):1191-1201. (Russian).


38. Ueda K, Fukuma N, Takimoto E. Hydrogen Sulfide, a Potential Cardioprotective Gas Activating a Life Span Regulator. Int. Heart. J. 2016;57(4):393-394. doi: 10.1536/ ihj.16-252.


39. Shen Y, Shen Z, Luo S, Guo W, Zhu YZ. The Cardioprotective Effects of Hydrogen Sulfide in Heart Diseases: From Molecular Mechanisms to Therapeutic Potential. Oxid. Med. Cell. Longev. 2015;2015:925167. doi: 10.1155/2015/925167.


40. Khodosovsky MN. Uchastie gazotransmitterov v korrekcii reperfuzionnyh povrezhdenij pecheni [Involvement of gasotransmitters in the correction of liver reperfusion injury]. Grodno: GrSMU; 2017. 212 p. (Russian).


41. Kimura H. Physiological Roles of Hydrogen Sulfide and Polysulfides. Handb Exp Pharmacol. 2015;230:61-81. doi: 10.1007/978-3-319-18144-8_3.


42. Pan H, Xie X, Chen D, Zhang J, Zhou Y, Yang G. Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation. Eur J Pharmacol. 2014;741:74-82. doi: 10.1016/j.ejphar. 2014.07.037.


43. Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol. 2008;295(2):H801-H806. doi: 10.1152/ajpheart.00377.2008.


44. Li Q, Lancaster JRJr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 2013;35:21-34. doi: 10.1016/j. niox.2013.07.001.


45. Al-Magableh MR, Kemp-Harper BK, Ng HH, Miller AA, Hart JL. Hydrogen sulfide protects endothelial nitric oxide function under conditions ofacute oxidative stress in vitro. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(1):67- 74. doi: 10.1007/s00210-013-0920-x.


46. Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12(1):1-13. doi: 10.1089/ars.2008.2282.


47. Wang M, Hu Y, Fan Y, Guo Y, Chen F, Chen S, Li Q, Chen Z. Involvement of Hydrogen Sulfide in Endothelium-Derived Relaxing Factor-Mediated Responses in Rat Cerebral Arteries. J Vasc Res. 2016;53(3-4):172-185.


48. Cheng Z, Shen X, Jiang X, Shan H, Cimini M, Fang P, Ji Y, Park JY, Drosatos K, Yang X, Kevil CG, Kishore R, Wang H. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Redox Biol. 2018;16:215-225. doi: 10.1016/j.redox.2018.02.006.


49. Khodosovsky MN, Zinchuk VV. Vlijanie jeritropojetina na kislorodtransportnuju funkciju krovi i prooksidantno-antioksidantnoe sostojanie pri ishemii-reperfuzii pecheni [Erythropoietin influence on the blood oxygen transport and prooxidant-antioxidant state during hepatic ischemia-reperfusion]. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova [Russian Journal of Physiology]. 2014;100(5):592-601. (Russian).


50. Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayashi N, Kimura T, Yamashita K, Kamiyama T, Shimamura T, Taketomi A, Todo S. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today. 2015;45(7):892-903. doi: 10.1007/s00595-014-1064-4.

Опубликован
2019-06-05
Как цитировать
1.
Ходосовский МН. РОЛЬ ГАЗОТРАНСМИТТЕРОВ (NO И H2S) В МЕХАНИЗМАХ ЗАЩИТЫ ОТ ПОСТИШЕМИЧЕСКИХ НАРУШЕНИЙ ПЕЧЕНИ. journalHandG [Интернет]. 5 июнь 2019 г. [цитируется по 20 апрель 2024 г.];3(1):14-1. доступно на: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/93
slot demo gratisslot gacor gampang menangSLOT DEMOslot pulsahttps://e-learning.iainponorogo.ac.id/thai/https://organisasi.palembang.go.id/userfiles/images/https://lms.binawan.ac.id/terbaik/slot gacor maxwinslot gacor 2024slot gacor terbaikslot gacor hari inihttp://ti.lab.gunadarma.ac.id/jobe/runguard/https://satudata.kemenpora.go.id/uploads/demo/