THE ROLE OF ENDOGENOUS INTOXICATION IN THE REGULATION OF BCL-2 GENE EXPRESSION IN THE DYNAMICS OF EXPERIMENTAL SUBHEPATIC OBSTRUCTIVE JAUNDICE
Abstract
Background. Antiapoptotic gene Bcl-2 blocks cell death, prolongs cell survival in many cellular systems, protects against various cytotoxic effects.
Objective – to evaluate the role of endogenous intoxication in the regulation of Bcl-2 antiapoptotic gene expression in the dynamics of experimental subhepatic obstructive jaundice.
Material and methods. The subhepatic obstructive jaundice (duration: 1, 3, 5 and 10 days) was simulated in rats by bandaging the common bile duct at the liver gate. Sham operated animals were used as a control group. The concentration of total bile acids, total bilirubin and urea as well as the activity of ALT and AST were determined in blood serum of experimental and control rats. Total RNA was isolated from 1 ml of whole blood. The level of Bcl2 gene expression was performed by real-time PCR (PCR-RT).
Results. Over a 10 day-experiment the concentration of total bile acids in blood serum of jaundiced animals has increased 38-74 times (p<0.001), the level of bilirubin - 11.7-18 times (p<0.001), aminotransferase activity and urea concentration have increased significantly. All this leads to endotoxemia, producing a cytotoxic effect on the tissues of the internal environment of the body and is accompanied by enhanced relative level of expression of the antiapoptotic gene Bcl-2.
Conclusion. A 10-day-subhepatic obstructive jaundice (the degree of its severity depends on the duration of cholestasis) leads to the development of biliary endogenous intoxication, accompanied by enhanced relative level of expression of the Bcl-2 antiapoptotic gene, that in its turn blocks the development of apoptosis.
References
1. Cherepanova MA. Osobennosti jekspressii antiapoptoticheskogo belka Bcl-2 v pecheni v modeli ozhirenija i saharnogo diabeta 2-go tipa i pri korrekcii linagliptinom [Peculiarities of the antiapoptotic Bcl-2 protein expression in liver in a model of obesity and type 2 diabetes and with linaglyptin correction]. Acta Biomedica Scientifica. 2018;3(1):116-119. doi: 10.29413/ABS.2018-3.1.18.(Russian).
2. Komarceva IA, Popov JeN, Komarceva EV, Zaika AV. Promotor apoptoza gen r53 i antiapoptoznyj gen Bcl-2 v proliferirujushhih kletkah. Ukrainskij zhurnal klinichnoi ta laboratornoi medicini. 2009;4(2):162-167. (Russian).
3. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994;369(6478):321-333. doi: 10.1038/369321a0.
4. Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang HG, Reed JС. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl. Acad. Sci. 1994;91(20):9238-9242. doi: 10.1073/pnas.91.20.9238.
5. Reed JC. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 1994;124(1-2):1-6. doi: 10.1083/jcb.124.1.1.
6. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74(4):609-619. doi: 10.1016/0092-8674(93)90509-o.
7. Gordeev SA, Bykova TV, Zubova SG, Aksenov ND, Pospelova TV. Antiapoptoticheskij gen bcl-2 prepjatstvuet reaktivacii programmy starenija, inducirovannoj ingibitorom gistonovyh deacetilaz butiratom natrija v fibroblastah krysy, transformirovannyh onkogenami E1A i cHa-RAS [Antiapoptotic gene Bcl-2 prevents cellular senescence program reactivation induced by histone deacetylase inhibitor sodium butyrate in E1A and cHa-ras transformed rat fibroblasts]. Citologija. 2015;57(2):135-143. (Russian).
8. Grineva NI, Duhovenskaja EA, Timofeev AM, Ahlynina TV, Gerasimova LP, Manakova TE, Borovkova TV, Shmarov DA, Sarycheva TG, Najdenova NM, Gavrichkova AR, Kolosova LJu, Koloshejnova TI, Kovaleva LG. Jekspressija genov pri proliferacii i differencirovke gemopojeticheskih kletok s Ph-hromosomoj ex vivo [Gene expression upon proliferation and differentiation of hematopoietic cells with ph chromosome ex vivo]. Acta naturae. 2012;4(3):101-120. (Russian).
9. Corey EJ, Matsuda SP, Bartel B. Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Proc. Natl. Acad. Sci. USA. 1994;91(6):2211-2215. doi: 10.1073/pnas.91.6.2211.
10. Mihajlov VP, Katinas GS. Tkanevoj gomeostaz i ego mehanizmy. Arhiv anatomii, gistologii i jembriologii. 1984;87(9):5-13. (Russian).
11. Kamyishnikov VS. Spravochnik po kliniko-biohimicheskoj laboratornoj diagnostike. Vol. 2. Minsk: Belarus; 2000. 462 р. (Russian).
12. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real- Time Quantitative PCR and the 2-ΔΔCt Method. Methods. 2001;25(4):402-408. doi: 10.1006/meth.2001.1262.
13. Fabbri A, Bianchi GP, Motta E. Regolazione epatica della sintesi dell’urea Fegato. 1990;36(2-3):129-139. (Italian).
14. Saulo K. Chronic renal failure: management. Lancet. 1991;338(8764):423-427.
15. Shejman DA. Patofiziologija pochki. Moskva: BINOM; 1999. 205 р. (Russian).
16. Kishkun AA. Laboratornaja diagnostika neotlozhnyh sostojanij. Moskva: Labora; 2012. 816 р. (Russian).