МЕХАНИЗМЫ ВОЗДЕЙСТВИЯ ЖЕЛЧНЫХ КИСЛОТ НА ПРОТОКОВЫЕ КЛЕТКИ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ
Аннотация
Цель обзора – представить анализ современных литературных сведений о механизмах влияния желчных кислот, попадающих в панкреатические протоки, на дуктальные клетки. Показано, что воздействие желчных кислот специфично и зависит от их концентрации. Как свидетельствуют результаты экспериментов in vitro и in vivo, низкие концентрации желчных кислот с помощью внутриклеточных механизмов усиливают дуктальную секрецию НСО3- и жидкости. Увеличенный объём жидкости может способствовать уменьшению концентрации желчных кислот, вымыванию из панкреатических протоков и предотвращению их воздействия на ацинарные клетки. Высокие концентрации желчных кислот приводят к нарушению целостности эпителиального дуктального барьера. В дуктулоцитах наблюдается устойчивый патологический подъём цитозольного Са2+, повреждение митохондрий, истощение АТФ, блок базолатерального и люминального транспортного механизма ионов. Предполагается, что в этих условиях желчные кислоты могут достигать и повреждать ацинарные клетки, способствуя развитию острого билиарного панкреатита.
Литература
1. Lankisch PG, Apte M, Banks PA. Acute pancreatitis. Gastrojenterologija Sankt-Peterburga. 2017;(2):3-12.
2. Firsova VG. Parshikov VV, Kuznecov SS, Bugrova ML, Jakovleva EI. Ostryj pankreatit: morfologicheskie aspekty techenija zabolevanija [Acute pancreatitis: morphological aspects of the course of the disease]. Annaly khirurgicheskoi gepatologii [Annals of surgical hepatology]. 2014;19(1):86-95. (Russian).
3. Mozheyko LA. Zhelchnyie kislotyi kak patogeneticheskiy faktor ostrogo biliarnogo pankreatita [Bile acids as a pathogenetic factor of acute biliary pankreatitis]. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta [Journal of the Grodno State Medical University]. 2018;16(6):648-653( Russian).
4. Gryshchenko O, Gerasimenko JV, Peng S, Gerasimenko OV, Petersen OH. Calcium signalling in the acinarenvironment of the exocrine pancreas: physiology and pathophysiology. J. Physiol. 2018;596(4):2663-2664. doi: 10.1113/ Р275395.
5. Singh P, Garg PK. Pathophysiological mechanisms in acute pancreatitis: current understanding. Indian J. Gastroenterol. 2016;35(3):153-166. doi: 10.1007/s12664-016-0647-y.
6. Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of Ca2+ in the pathophysiology of pancreatitis. J. Physiol. 2014;592(2):269-280. doi: 10.1113/jphysiol.2013.261784.
7. Mukherjee R, Mareninova O, Odinokova IV, Huang W, Murphy JM, Chvanov M, Javed M, Wen L, Booth D, Cane M, Awais M, Gavillet B, Pruss RM, Schaller S, Molkentin JD, Tepikin AV, Petersen OH, Pandol SJ, Gukovsky I, Criddle DN, Gukovskaya AS, Sutton R; NIHR Pancreas Biomedical Research Unit. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevent acute pancreatitis by protecting production of ATP. Gut. 2016;65(8):1333-1346. doi: 10.1136/ gutjnl-2014-308553.
8. Morihisa H, Shimosegawa T. Bile Acids and Pancreatic Disease. In: Tazuma S, Takikawa H, editors. Bile Acids in Gastroenterology. Tokyo: Springer; 2017. Ch. 12; p. 169-176. doi: 10.1007/978-4-431-56062-3_12.
9. Pallagi P, Hegyi P, Rakonczay Z. The Physiology and Pathophysiology of Pancreatic Ductal Secretion. Pancreas. 2015;44(8):1211-1233. doi: 10.1097/MPA.0000000000000421.
10. Venglovecz V, Hegyi P, Rakonczay Z Jr, Tiszlavicz L, Nardi A, Grunnet M, Gray MA. Pathophysiological relevance of apical large-conductance Ca2+-activated potassium channels in pancreatic duct epithelial cells. Gut.2011;60(3):361-369. doi: 10.1136/gut.2010.214213.
11. Biczo G, Vegh ET, Shalbueva N, Mareninova O, Elperin J, Lotchaw E, Gretler S, Lugea A, Malla SR, Dawson D, Ruchala P, Whitelegge J, French SW, Wen L, Husain SZ, Gorelick FS, Hegyi P, Rakonczay ZJr, Gukovsky I, Gukovskaya AS. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models. Gastroenterol. 2018;154(3):689-703. doi: 10.1053/j.gastro.2017.10.012.
12. Mozheyko LA. Gistofiziologija duktalnoj sekrecii podzheludochnoj zhelezy [Histophysiology of pancreatic ductal secretion]. Gepatologija i gastroenterologija [Hepatology and Gastroenterology]. 2019;3(1):22-27. (Russian).
13. Ishiguro H, Yamamoto A, Nakakuki M, Yi L, Ishiguro M, Yamaguchi M, Kondo S, Mochimaru Y. Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J. Med. Sci. 2012;74(1):1-18.
14. Reber HA, Tweedie JH. Effects of a bile salt on the permeability of the pancreatic duct to macromolecules. Surg. Forum. 1981;32:219-221.
15. Farmer RC, Tweedie J, Maslin S, Reber HA, Adler G, Kern H. Effects of bile salts on permeability and morphology of main pancreatic duct in cats. Dig. Dis. Sci. 1984;29(8):740-751.
16. Armstrong CP, Taylor TV, Torrance HB. Effects of bile, infection and pressure on pancreatic duct integrity. Br. J. Surg. 1985;72(10):792-795. doi: 10.1002/bjs.1800721007.
17. Argent BE, Arkle S, Cullen MJ, Green R. Morphological, biochemical and secretory studies on rat pancreatic ducts maintained in tissue culture. Q. J. Exp. Physiol. 1986;71(4):633-648. doi: 10.1113/expphysiol.1986.sp003023.
18. Lee MG, Ohana E, Park HW, Yang D, Muallem S. Molecular mechanism of pancreatic and salivary gland flid and HCO3 secretion. Physiol. Rev. 2012;92(1):39-74. doi:10.1152/physrev.00011.2011.
19. Maleth J, Venglovecz V, Razga Z, Tiszlavicz L, Rakonczay ZJr, Hegyi P. Non-conjugated chenodeoxycholate induces severe mitochondrial damage and inhibits bicarbonate transport in pancreatic duct cells. Gut. 2011;60(1):136-138. doi: 10.1136/gut.2009.192153.
20. Vitek L, Haluzik M. The role of bile acids in metabolic regulation. J. Endocrinol. 2016;228(3):85-96. doi: 10.1530/JOE-15-0469.
21. Alvarez C, Fasano A, Bass BL. Acute effects of bile acids on the pancreatic duct epithelium in vitro. J. Surg. Res. 1998;74(1):43-46. doi: 10.1006/jsre.1997.5202.
22. Okolo C, Wong T, Moody MW, Nguyen TD. Effects of bile acids on dog pancreatic duct epithelial cell secretion and monolayer resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;283(5):1042-1050. doi: 10.1152/ajpgi.00436.2001.
23. Perides G, Laukkarinen JM, Vassileva G, Steer ML. Biliary acute pancreatitis in mice is mediated by the G protein-coupled cell surface bile acid receptor GPBAR1. Gastroenterology. 2010;138(2):715-725. doi: 10.1053/j.gastro.2009.10.052.
24. Kowal JM, Haanes KA, Christensen NM, Novak I. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells. Cell Commun. Signal. 2015;13:28. doi: 10.1186/s12964-015-0107-9.
25. Ignath I, Hegyi P, Venglovecz V, Szekely CA, Carr G, Hasegawa M, Inoue M, Takбcs T, Argent BE, Gray MA, Rakonczay Z Jr. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas. 2009;38(8):921-929. doi: 10.1097/MPA.0b013e3181b65d34.
26. Maleth J, Hegyi P, Rakonczay JrZ, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: mechanism and consequences. Pancreatology. 2015;15(4 Suppl):S18-22. doi: 10.1016/j.pan.2015.06.002.
27. Czako L, Yamamoto M, Otsuki M. Pancreatic fluid hypersecretion in rats after acute pancreatitis. Dig. Dis. Sci. 1997;42(2):265-272. doi: 10.1023/a:1018893230319.
28. Hegyi P, Czako L, Takacs T, Szilvassy Z, Lonovics J. Pancreatic secretory responses in L-arginineinduced pancreatitis: comparison of diabetic and nondiabetic rats. Pancreas. 1999;19(2):167-174. doi: 10.1097/00006676-199908000-00010.
29. Renner IG, Wisner JRJr. Ceruletide-induced acute pancreatitis in the dog and its amelioration by exogenous secretin. Int. J. Pancreatol. 1986;1(1):39-49. doi: 10.1007/BF02795238.
30. Renner IG, Wisner JRJr, Rinderknecht H. Protective effects of exogenous secretin on ceruletideinduced acute pancreatitis in the rat. J. Clin. Invest. 1983;72(3):1081-1092. doi: 10.1172/JCI111033.
31. Durie PR. Pancreatitis and mutations of the cystic fibrosis gene. N. Engl. J. Med. 1998;339(10):687-688. doi: 10.1056/NEJM199809033391008.
32. Madácsy T, Pallagi P, Maleth J. Cystic Fibrosis of the Pancreas: The Role of CFTR Channel in the Regulation of Intracellular Ca2+ Signaling and Mitochondrial Function in the Exocrine Pancreas. Front. Physiol. 2018;9:1585-1593. doi: 10.3389/fphys.2018.01585.
33. TakácsT, Rosztóczy A, Maléth J, Rakonczay JZ, Hegyi P. Intraductal acidosis in acute biliary pancreatitis. Pancreatology. 2013;13(4):333-335. doi: 10.1016/j.pan.2013.05.011.