RETINOL AND RETINOL-BINDING PROTEIN CORRELATION WITH NON-INVASIVE FIBROSIS MARKERS (PDGF-BB, GF-Β1) IN CHRONIC LIVER DISEASES
Abstract
Background. Perisinusoidal lipocytes (HSC) and retinol (R) metabolism play an important role in liver fibrosis.
Objective. To estimate R and retinol-binding protein type 4 (RBP4) correlation with non-invasive fibrosis markers in patients with chronic liver diseases.
Material and methods. The subjects of the study were 129 adult patients with chronic diffuse liver diseases, who were divided into 2 groups: those with chronic hepatitis - 104 patients, and those with liver cirrhosis - 25 patients. In addition, 48 patients were further subdivided according to liver fibrosis stages. Blood levels of R, RBP4, platelet growth
factor BB, and transforming growth factor β1 (TGF-β1) were determined in the patients.
Results. Differences in R and RBP4 content were established in the patients with different stages of liver fibrosis, the most informative values and coefficients for liver fibrosis staging were found. High blood levels of retinol and TGF-β1 are indicative of transformation of HSC into myofibroblasts, increased synthesis of profibrogenic factors, including TGF-β1,
and the progression of liver fibrosis.
Conclusions. Laboratory monitoring of R, RBP4 and TGF-β1 levels as well as of RBP4/R and PDGF-BB/R coefficients is an additional test for the diagnosis of liver fibrosis in chronic liver diseases.
References
Lo CS, Wahlqvist ML, Horie Y. Determination of retinoic acid and retinol at physiological concentration by HPLC in Caucasians and Japanese women. Asia Pac J Clin Nutr. 1996;5(3):173-174.
Weber D, Grune T. The contribution of β-carotene to vitamin A supply of humans. Mol Nutr Food Res. 2012;56(2):251-258. https://doi.org/10.1002/mnfr.201100230
Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr. 2017;57(11):2404-2411. https://doi.org/10.1080/10408398.2015.1060940
Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD. Vitamin A Absorption, Storage and Mobilization. Subcell Biochem. 2016;81:95-125. https://doi.org/10.1007/978-94-024-0945-1_4
Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21(3):311-335. https://doi.org/10.1055/s-2001-17550
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients. 2017;10(1):29. https://doi.org/10.3390/nu10010029
Kawada N. The hepatic perisinusoidal stellate cell. Histol Histopathol. 1997;12(4):1069-1080.
World Health Organization. Indicators for assessing vitamin A deficiency and their application in monitoring and evaluation intervention programmes [Internet]. 1996. Available from: https://www.who.int/publications/i/item/WHO-NUT-96.10
Perduca M, Nicolis S, Mannucci B, Galliano M, Monaco HL. Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(4):458-466. https://doi.org/10.1016/j.bbalip.2018.01.010
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem. 2021;226:113856. https://doi.org/10.1016/j.ejmech.2021.113856
Rebrov VG, Gromova OA. Vitaminy, makro- i mikrojelementy. Moskva: GJeOTAR-Media; 2008. 960 p. (Russian).
Chaves GV, Peres WA, Gonçalves JC, Ramalho A. Vitamin A and retinol-binding protein deficiency among chronic liver disease patients. Nutrition. 2015;31(5):664-8. https://doi.org/10.1016/j.nut.2014.10.016
Mondloch S, Gannon BM, Davis CR, Chileshe J, Kaliwile C, Masi C, Rios-Avila L, Gregory JF, Tanumihardjo SA. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high liver vitamin A stores. Am J Clin Nutr. 2015;102(2):497-504. https://doi.org/10.3945/ajcn.115.112383
Brandão DF, Ramalho LN, Ramalho FS, Zucoloto S, Martinelli Ade L, Silva Ode C. Liver cirrhosis and hepatic stellate cells. Acta Cir Bras. 2006;21(Suppl 1):54-57. https://doi.org/10.1590/S0102-86502006000700013
Nepomnyashchikh GI, Tolokonskaya NP, Aidagulova SV, Nepomnyashchikh DL, Sakharova EG, Mezentseva GA, Savchenko YaE. Ultrastrukturnye reakcii kletochnyh populjacij pecheni pri dejstvii RNK- i DNK-genomnyh virusov gepatita S+V [Ultrastructural reactions of liver cell populations induced by RNA-containing hepatitis C and DNA-containing hepatitis B viruses]. Bjulleten jeksperimentalnoj biologii I mediciny [Bulletin of Experimental Biology and Medicine]. 1999;128(7):101-105. https://doi.org/10.1007/BF02433334. edn: YQNAPB. (Russian).
Postnikova OA. Strukturnyj analiz vzaimodejstvij gepatocitov, jendoteliocitov i zvezdchatyh kletok pecheni pri vibracionnom i virusnom vozdejstvijah [master's thesis]. Novosibirsk; 2013. 46 p. (Russian).
Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, Ramadori G, Knittel T. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol. 2002;36(5):607-13. https://doi.org/10.1016/S0168-8278(02)00050-8
Tsyrkunov VM, Krotkova EN, Abdinasir AA. Klinicheskaja interpretacija rezultatov fibro-, steatoskanirovanija pecheni pri hronicheskom gepatite C [Clinical interpretation of results of fibro-, heat-screening of liver in chronic hepatitis C]. Gepatologija i gastrojenterologija [Hepatology and Gastroenterology]. 2019;3(2):156-165. https://doi.org/10.25298/2616-5546-2019-3-2-156-165 (Russian).
Taylor SL, Lamden MP, Tappel AL. Sensitive fluorometric method for tissue tocopherol analysis. Lipids. 1976;11(7):530-8. https://doi.org/10.1007/BF02532898
Sharmanov TSh. Vitamin A i belkovoe pitanie. Moskva: Medicina; 1979. 230 p. (Russian).
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol. 2021;12:671640. https://doi.org/10.3389/fphar.2021.671640