ЛИЗОСОМАЛЬНО-ЗАВИСИМАЯ ГИБЕЛЬ ГЕПАТОЦИТОВ ПРИ ХРОНИЧЕСКОМ ГЕПАТИТЕ С
Аннотация
Введение. В настоящее время лизосомально-зависимая гибель клеток (LDCD) является общепризнанной и напрямую взаимосвязанной со многими механизмами апоптоза гепатоцитов при хроническом гепатите С (ХГС). В отечественной литературе существует дефицит визуализационных материалов данного процесса при ХГС. Цель исследования – представить морфологические характеристики зависимой от лизосом клеточной гибели гепатоцитов. Материал и методы. Объектом исследования были прижизненные биоптаты печени 18 пациентов с хронической HCV-инфекцией, полученные после подписания ими информированного согласия. Биоптаты печени изучали в электронном микроскопе JEМ-1011 (JEOL, Япония) при увеличениях 10000-60000 при ускоряющем напряжении 80 кВт. Для получения снимков использовали цифровую камеру Olympus Mega View III с программой iTEM для обработки изображений (Olympus, Германия). Результаты. В иллюстрациях и описании представлены взаимосвязанные между собой последовательные стадии лизосомально-зависимой гибели клеток (LDCD) и зависимой от аутофагии клеточной гибели (ADCD) гепатоцитов при ХГС. Представлен процесс формирования аутофагосомы, описаны три типа аутофагии (макроаутофагия, микроаутофагия, опосредованная шапероном аутофагия). Подробно иллюстрирована одна из основных форм аутофагии – митофагия. Изложены особенности аутофагии, ее провирусные и противовирусные механизмы, а также роль HCV в апоптозе, взаимосвязанном с аутофагией. Выводы. Гибель гепатоцитов при ХГС, зависимая от аутофагии, является высоко регулируемым и консервативным клеточным механизмом поддержания клеточного гомеостаза и содействия выживанию клеток. HCV-индуцированная аутофагия подавляет апоптоз, чтобы способствовать выживанию клеток. Вызванный HCV аутофагический ответ снижает противовирусный врожденный иммунный ответ в гепатоцитах, инфицированных HCV, способствуя хронизации инфекционного процесса. Визуализация процесса аутофагии позволяет более точно оценить механизмы и ультраструктурные компоненты разных видов и стадий аутофагии. Изменения во всех структурных компонентах аутофагии не носят изолированный характер, характеризуются комплексом специфических признаков, ассоциированных друг с другом и объединенных апоптозогенным механизмом патогенеза HCV-инфекции.Литература
1. Wang F, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19(12):918-931. https://doi.org/10.1111/tra.12613.
2. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23(16):2881-2890. https://doi.org/10.1038/sj.onc.1207512.
3. Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4(6):740-743. https://doi.org/10.4161/auto.6398.
4. Liu C, Qu A, Han X, Wang Y. HCV core protein represses the apoptosis and improves the autophagy of human hepatocytes. Int. J. Clin. Exp. Med. 2015;8(9):15787-15793.
5. Mizushima N. Autophagy: Process and function. Genes Dev. 2007;21(22):2861-2873. https://doi.org/10.1101/gad.1599207.
6. Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiol. Rev. 2010;90(3):1165-1194. https://doi.org/10.1152/physrev.00061.2009.
7. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011;27:107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005.
8. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 2007;9(10):1102-1109. https://doi.org/10.1038/ncb1007-1102.
9. Liu Y, Levine B. Autosis and autophagic cell death: The dark side of autophagy. Cell Death Differ. 2015;22(3):367-376. https://doi.org/10.1038/cdd.2014.143.
10. Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J. Cell Sci. 2016;129(23):4329-4339. https://doi.org/10.1242/jcs.196287.
11. Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells. 2019;8(7):674. https://doi.org/10.3390/cells8070674.
12. Mari M, Tooze SA, Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 Biol. Rep. 2011;3:25. https://doi.org/10.3410/B3-25.
13. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-1075. https://doi.org/10.1038/nature06639.
14. Dash S, Chava S, Aydin Y, Chandra PK, Ferraris P, Chen W, Balart LA, Wu T, Garry RF. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses. 2016;8(5):E150. https://doi.org/10.3390/v8050150.
15. Aki T, Unuma K, Uemura K. Emerging roles of mitochondria and autophagy in liver injury during sepsis. Cell Stress. 2017;1(2):79-89. https://doi.org/10.15698/cst2017.11.110.
16. Ueno T, Komatsu M. Autophagy in the liver, functions in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2017;14(3):170-184. https://doi.org/10.1038/nrgastro.2016.185.
17. Anding AL, Baehrecke EH. Cleaning house, Selective autophagy of organelles. Dev. Cell. 2017;41(1):10-22. https://doi.org/10.1016/j.devcel.2017.02.016.
18. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1):3-5.https://doi.org/10.1089/rej.2005.8.3.
19. Shimura H, Hattori N, Kubo Si, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000;25:302-305. https://doi.org/10.1038/77060.
20. Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 2012;22(2):320-333. https://doi.org/10.1016/j.devcel.2011.12.014.
21. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012;13(4):378-385. https://doi.org/10.1038/embor.2012.14.
22. Jin SM, Youle RJ. PINK1-and Parkin-mediated mitophagy at a glance. Cell Sci. 2012;125(Pt 4):795-799. https://doi.org/10.1242/jcs.093849.
23. Nagar R. Autophagy: A brief overview in perspective of dermatology. Indian J. Dermatol. Venereol. Leprol. 2017;83(3):290-297. https://doi.org/10.4103/0378-6323.196320.
24. Paolini A, Omairi S, Mitchell R, Vaughan D, Matsakas A, Vaiyapuri S, Ricketts T, Rubinsztein DC, Patel K. Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Sci. Rep. 2018;8(1):9062. https://doi.org/10.1038/s41598-018-27429-7.
25. Campbell P, Morris H, Schapira A. Chaperone-mediated autophagy as a therapeutic target for Parkinson disease. Expert Opin. Ther. Targets. 2018;22(10):823-832. https://doi.org/10.1080/14728222.2018.1517156.
26. Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 2004;36(12):2435-2444. https://doi.org/10.1016/j.biocel.2004.02.013.
27. Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. Biol. Chem. 2004;279(11):9987-9996. https://doi.org/10.1074/jbc.M3079052009.
28. Cooper KF. Till death do us part: The marriage of autophagy and apoptosis. Oxid. Med. Cell Longev. 2018;2018:4701275. https://doi.org/10.1155/2018/4701275.
29. Füllgrabe J, Ghislat C, Cho DH, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci. 2016;129(16):3059-3066. https://doi.org/10.1242/jcs.188920.
30. Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016;283(13):2403-2413. https://doi.org/10.1111/febs.13677.
31. Hsu P, Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862(1):114-129. https://doi.org/10.1016/j.bbalip.2016.08.003.
32. Kissová I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy. 2007;3(4):329-336. https://doi.org/10.4161/auto.4034.
33. Zaffagnini G, Martens S. Mechanisms of selective autophagy. J. Mol. Biol. 2016;428(9 Pt A):1714-1724. https://doi.org/10.1016/j.jmb.2016.02.004.
34. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell. 2009;20(7):1981-1991. https://doi.org/10.1091/mbc.E08-12-1248.
35. Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl. Acad. Sci. USA. 2009;106(33):14046-14051. https://doi.org/10.1073/pnas.0907344106.
36. Shrivastava S, Bhanja Chowdhury J, Steele R, Ray R, Ray RB. Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J. Virol. 2012;86(16):8705-8712. https://doi.org/10.1128/JVI.00616-12.
37. Grégoire IP, Richetta C, Meyniel-Schicklin L, Borel S, Pradezynski F, Diaz O, Deloire A, Azocar O, Baguet J, Le Breton M, Mangeot PE, Navratil V, Joubert PE, Flacher M, Vidalain PO, André P, Lotteau V, Biard-Piechaczyk M, Rabourdin-Combe C, Faure M. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog. 2011;7(12):e1002422.
38. Ke PY, Chen SS. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 2011;121(1):37-56. https://doi.org/10.1172/JCI41474.
39. Ke PY, Chen SS. Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liver-associated diseases. World J. Gastroenterol. 2014;20(19):5773-5793. https://doi.org/10.3748/wjg.v20.i19.5773.
40. Wang H, Tai AW. Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses. 2016;8(5):E142. https://doi.org/10.3390/v8050142.
41. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. 2nd ed. New York; London: Garland Publ.; 1989. 1219 p.
42. Lazar C, Uta M, Branza-Nichita N. Modulation of the unfolded protein response by the human hepatitis B virus. Front. Microbiol. 2014;5:433. https://doi.org/10.3389/fmicb.2014.00433.
43. Katze MG, Fornek JL, Palermo RE, Walters KA, Korth MJ. Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat. Rev. Immunol. 2008;8(8):644-654. https://doi.org/10.1038/nri2377.
44. O’donnell V, Pacheco JM, LaRocco M, Burrage T, Jackson W, Rodriguez LL, Borca MV, Baxt B. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology. 2011;410(1):142-150. https://doi.org/10.1016/j.virol.2010.10.042.
45. Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R. Hepatitis C virus genotype 1a growth and induction of autophagy. J. Virol. 2008;82(5):2241-2249. https://doi.org/10.1128/JVI.02093-07.
46. Shrivastava S, Devhare P, Sujijantarat N, Steele R, Kwon YC, Ray R, Ray RB. Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway. J. Virol. 2016;90(3):1387-1396. https://doi.org/10.1128/JVI.02383-15.
47. Dash S, Chava S, Aydin Y, Chandra PK, Ferraris P, Chen W, Balart LA, Wu T, Garry RF. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses. 2016;8(5):E150. https://doi.org/10.3390/v8050150.
48. Ploen D, Hildt E. Hepatitis C virus comes for dinner: How the hepatitis C virus interferes with autophagy. World J. Gastroenterol. 2015;21(28):8492-8507. https://doi.org/10.3748/wjg.v21.i28.8492.
49. Ballabio A. The awesome lysosome. EMBO Mol. Med. 2016;8(2):73-76. https://doi.org/10.15252/emmm.201505966.