https://www.enterair.pl/slot-gacor/

NON-ALCOHOLIC FATTY LIVER DISEASE: WITH A FOCUS ON FRUCTOSE

  • N. N. Silivontchik Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus https://orcid.org/0000-0002-6167-9737
  • M. V. Shtonda Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
Keywords: non-alcoholic fatty liver disease, fructose, metabolism

Abstract

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver in the absence of secondary causes. The review presents data on the role of fructose in the accumulation of fat in the liver and the mechanisms of NAFLD development. A number of data have been obtained on the effects of fructose, in the form of sugar-containing and fructose-containing drinks, related to NAFLD development.

References

Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V, Tilg H, Roden M, Gastaldelli A, Yki-Jarvinen H, Schick F, Vettor R, Fruhbeck G, Mathus-Vliegen L. EASLEASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64(6):1388-1402. https://doi.org/10.1016/j.jhep.2015.11.004.

Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients. 2021;13(4):1314. https://doi.org/10.3390/nu13041314.

Roeb E, Weiskirchen R. Fructose and non-alcoholic steatohepatitis. Front. Pharmacol. 2021;12:634344. https://doi.org/10.3389/fphar.2021.634344.

EslamM, Newsome PN, Anstee QM, Targher G, Gomez MR, Zelber-Sagi S, Wong VW-S, Dufour J-F, Schattenberg J, Arrese M, Valenti L, Shiha G, Tiribelli C, Yki-Järvinen H, Fan J-G, Gronbaek H, Yilmaz Y, Cortez-Pinto H, Oliveira CP, Bedossa P, Adams LA, Zheng M-H, Fouad Y, Chan W-K, Mendez-Sanchez N, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020;73:202-209. https://doi.org/10.1016/j.jhep.2020.03.039.

Jegatheesan P, De Bandt J-P. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230. https://doi.org/10.3390/nu9030230.

Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of nonalcoholic fatty liver disease. J. Hepatol. 2018;68(5):1063-1075. https://doi.org/10.1016/j.jhep.2018.01.019.

Lujan PV, Esmel EV, Mesegue ES. Overview of non-alcoholic fatty liver disease (NAFLD) and the role of sugary food consumption and other dietary components in its development. Nutrients. 2021;13(5):1442. https://doi.org/10.3390/nu13051442.

Shi Y-N, Liu Y-J, Xie Z, Zhang WJ. Fructose and metabolic diseases: too much to be good. Chin. Med. J. 2021;134(11):1276-1285. https://doi.org/10.1097/CM9.0000000000001545.

Mortera RR, Bains Y, Gugliucci A. Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front. Biosci (Landmark Ed). 2019;24:186-211. https://doi.org/10.2741/4713.

Rippe JM, Angelopoulos TJ. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur. J. Nutr. 2016;55(Suppl 2):45-53. https://doi.org/10.1007/s00394-016-1257-2.

Hengist A, Koumanov F, Gonzalez JT. Fructose and metabolic health: governed by hepatic glycogen status? J. Physiol. 2019;597(14):3573-3585. https://doi.org/10.1113/JP277767.

Kolderup A, Svihus B. Fructose metabolism and relation to atherosclerosis, type 2 diabetes, and obesity. J. Nutr. Met. 2015;2015:823081. https://doi.org/10.1155/2015/823081.

Gonzalez JT. Fructose and metabolic health: governed by hepatic glycogen status? J. Physiol. 2019;597(14):3573-3585. https://doi.org/10.1113/JP277767.

Hannou SA, Haslam DE, McKeown NM, Herman MF. Fructose metabolism and metabolic disease. J. Clin. Invest. 2018;128(2):545-555. https://doi.org/10.1172/JCI96702.

Stricker S, Rudloff S, Geier A, Steveling A, Roeb E, Zimmeret K-P. Fructose consumption - free sugars and their health effects. Dtsch. Arztebl. Int. 2021;118(5):71-78. https://doi.org/10.3238/arztebl.m2021.0010.

Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J. Exp. Biol. 2018;221(Suppl 1):jeb164202. https://doi.org/10.1242/jeb.164202.

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NME, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Lond Engl. 2014;384(994):766-781. https://doi.org/10.1016/S0140-6736(14)60460-8.

Mai BH, Yan L-J. The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes, Metab. Syndr. Obes. Targets Ther. 2019;12:821-826. https://doi.org/10.2147/DMSO.S198968.

Steenson S, Shojaee-Moradie F, Whyte MB, Jackson KG, Lovegrove JA, Fielding BA, Umpleb AM. The effect of fructose feeding on intestinal triacylglycerol production and de novo fatty acid synthesis in humans. Nutrients. 2020;12(6):1781. https://doi.org/10.3390/nu12061781.

Douard V, Ferraris R. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 2008;295(2):E227-E237. https://doi.org/10.1152/ajpendo.90245.2008.

Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High fructose intake and adipogenesis. Int. J. Mol. Sci. 2019;20(11):2787. https://doi.org/10.3390/ijms20112787.

Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, Nakajima S, Plitman E, Chung JK, Iwata Y, Wilson A, Remington G, Graff-Guerrero A. Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy non abuse humans. Int. J. Neuropsychopharmacol. 2015;18(7):1-10. https://doi.org/10.1093/ijnp/pyv014.

Perrar I, Buyken AE, Penczynski KJ, Remer T, Kuhnle GG, Herder C, Roden M, Della Corte K, Nöthlings U, Alexy U. Relevance of fructose intake in adolescence for fatty liver indices in young adulthood. Eur. J. Nutr. 2021;60(6):3029-3041. https://doi.org/10.1007/s00394-020-02463-2.

Ferraris RP, Choe J-Y, Patel CR. Intestinal absorption of fructose. Annu Rev. Nutr. 2018;38:41-67. https://doi.org/10.1146/annurev-nutr-082117-051707.

Geidl-Flueck B, Hochuli M, Németh A, Eberl A, Derron N, Köfeler HC, Tappy L, Berneis K, Spinas GA, Gerber PA. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. 2021;75(1):46-54. https://doi.org/10.1016/j.jhep.2021.02.027.

Tappy L, Morio B, Azzout-Marniche D, Champ M, Gerber M, Houdart S, Mas E, Rizkalla S, Slama G, Mariotti F, Margaritis I. French recommendations for sugar intake in adults: A novel approach chosen by ANSES. Nutrients. 2018;10(8):989. https://doi.org/10.3390/nu10080989.

Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, MacLean PS, Jackman MR, Asipu A, Roncal-Jimenez CA, Kosugi T, Rivarda CJ, Maruyamad S, Rodriguez-Iturbee B, Sánchez-Lozadaf LG, Bonthronb DT, Sauting YY, Johnsona RJ. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. USA. 2012;109(11):4320-4325. https://doi.org/10.1073/pnas.1119908109.

Campo L, Eiseler S, Pyrsopoulos A, Pyrsopoulos N. Fatty liver disease and gut microbiota: A comprehensive update dietary fructose intake has also been associated with NAFLD. J. Clin. Transl. Hepatol. 2019;7(1):56-60. https://doi.org/10.14218/JCTH.2018.00008.

Abdelmalek MF, Suzuki A, Guy CD, Unalp-Arida A, Colvin R, Johnson RJ, Diehl AM. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1961-1971. https://doi.org/10.1002/hep.23535.

Mosca A, Nobili V, De Vito R, Crudele A, Scorletti E, Villani A, Alisi A, Byrne CD. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J. Hepatol. 2017;66:1031-1036. https://doi.org/10.1016/j.jhep.2016.12.025.

Chiu S, Sievenpiper JL, de Souza RJ, Sievenpiper JL, de Souza RE, Cozma AI, Mirrahimi A, Carleton AJ, Ha V, Di Buono M, Jenkins AL, Leiter LA, Wolever TMS, DonWauchope AC, Beyene J, Kendall CWC, Jenkins DJA. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2014;68(4):416-423. https://doi.org/10.1038/ejcn.2014.8.

DiStefano JK, Shaibi GQ. The relationship between excessive dietary fructose consumption and pediatric fatty liver disease. Pediatr. Obes. 2021;16(6):e12759. https://doi.org/10.1111/ijpo.12759.

Ribeiro A, Igual-Perez M-J, Silva ES, Sokal EM. Childhood fructoholism and fructoholic liver disease. Hepatology Communications. 2019;3(1):44-51. https://doi.org/10.1002/hep4.1291.

Chen F, Esmaili S, Rogers GB, Bugianesi E, Petta S, Marchesini G, Bayoumi A, Metwally M, Azardaryany MK, Coulter S, Choo JM, Younes R, Rosso C, Liddle C, Adams LA, Craxì A, George J, Eslam M. Lean NAFLD: A distinct entity shaped by differential metabolic adaptation. Hepatology. 2020;71(4):1213-1227. https://doi.org/10.1002/hep.30908.

Assy N, Nasser G, Kamayse I, Nseir W, Beniashvili Z, Djibre A, Grosovski M. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can. J. Gastroenterol. 2008;22(10):811-816. https://doi.org/10.1155/2008/810961.

Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J. Hepatol. 2009;51(5):918-924. https://doi.org/10.1016/j.jhep.2009.05.033.

Maersk M, Belza A, Stødkilde-Jørgensen H, Ringgaard S, Chabanova E, Thomsen H, Pedersen SB, Astrup A, Richelsen B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2011;95(2):283-289. https://doi.org/10.3945/ajcn.111.022533.

DiNicolantonio JJ, Subramonian AM, O’Keefe JO. Added fructose as a principal driver of non-alcoholic fatty liver disease: a public health crisis. Open Heart. 2017;4(2):e000631. https://doi.org/10.1136/openhrt-2017-000631.

Simons N, Veeraiah P, Simons PIHG, Schaper NC, Kooi ME, Schrauwen-Hinderling VB, Feskens EJM, van der Ploeg Liesbeth EMC, van den Eynde MDG, Schalkwijk CG, Stehouwer CDA, Brouwers MCGJ. Effects of fructose restriction on liver steatosis (FRUITLESS); a double-blind randomized controlled trial. Am. J. Clin. Nutr. 2021;113(2):391-400. https://doi.org/10.1093/ajcn/nqaa332.

Chen Q, Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y, Wang T. Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 2017;9(2):96. https://doi.org/10.3390/nu9020096.

Azevedo VZ, Dall’Alba V. Fructose intake is not associated to the risk of hepatic fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Clin. Nutr. 2021;40(6):4275-4283. https://doi.org/10.1016/j.clnu.2021.01.022.

Schmidt NH, Svendsen P, Albarrán-Juárez J, Moestrup SK, Bentzon JB. High-fructose feeding does not induce steatosis or non-alcoholic fatty liver disease in pigs. Sci. Rep. 2021;11(1):2807. https://doi.org/10.1038/s41598-021-82208-1.

Published
2021-12-24
How to Cite
1.
Silivontchik NN, Shtonda MV. NON-ALCOHOLIC FATTY LIVER DISEASE: WITH A FOCUS ON FRUCTOSE. journalHandG [Internet]. 2021Dec.24 [cited 2024Nov.23];5(2):118-23. Available from: http://hepatogastro.grsmu.by/index.php/journalHandG/article/view/203

Most read articles by the same author(s)

https://stok.bte.co.id/pg/ https://coverage.bte.co.id/public/play/ https://lapor.bte.co.id/rungkat/ https://itj.jakartamrt.co.id/data/ https://dev.idcomm.id/wp-includes/IXR/slot-gacor/