CLINICAL MORPHOLOGY OF THE LIVER: HEPATOCYTES, ENDOMEMBRANE SYSTEM
Abstract
Background. One of the main structural and functional elements of hepatocytes ensuring the proper functioning of the body's systems is the endomembrane cytoplasm system (EMMS) represented by the endoplasmic reticulum, Golgi complex, lysosomes and other organelles. In clinical practice, EMMS components imaging in chronic hepatitis C (CHC) is insufficiently presented.Objective of the study is to present the morphological characteristics of the EMMS of hepatocytes in viral lesions of the liver.
Materials and methods. Liver bioptates were obtained using fine-needle aspiration biopsy from 18 patients (having given written informed consent) with chronic hepatitis C and co-infection of chronic hepatitis C and HIV. The morphological changes in liver biopsy specimens were described using light microscopy of semi-thin sections based on the improved method of fixation and electron microscopy of ultrathin sections. The pictures were taken with the help of a set from Olympus Mega View III digital camera (Germany) and the iTEM image processing software (Olympus, Germany).
Results. Detailed descriptive and imaging characteristics of the structural features of all components of the EMMS: the rough and smooth endoplasmic reticulum, the Golgi apparatus, lysosomes and peroxisome in CHC and HCV /HIV co-infection are presented. Particular attention is paid to the imaging of the EMMS structures responsible for the replication of HCV in case of co-infection. The pictures of primary and secondary lysosomes, structural features of heterolysosomes, autolysosomes, telolysosomes, peroxisomes are presented.
Conclusion. The morphological characteristics of changes in the EMMS of hepatocytes are most accurately presented by the imaging of all components of the EMMS using electron microscopy. The imaging of virus-induced membrane changes in the EMMS of hepatocytes reveals the peculiarities of cytopathic effects of HCV and the co-infection of HCV + HIV on various structures of the EMMS of hepatocytes responsible for the processes of detoxification, metabolism and replication of hepatotropic viruses. Changes in all structures of the EMMS of hepatocytes are not isolated, but characterized by a set of specific ultrastructural signs interrelated with each other and united by the apoptogenic mechanism of the pathogenesis of HCV infection. Further research is needed to clarify the role of HCV / HIV in the formation of replication "airfields" and "factories", to develop methods for their identification in order to uncover new mechanisms for the progression of HCV infection and the transformation of the infectious process into fibrogenic and oncogenic ones.
References
1. Hem A, Kormak D. Gistologija. Vol. 4. Moskva: Mir; 2004. 248 p. (Russian).
2. Kolman Ja, Rjom KG. Nagljadnaja biohimija. Moskva: Mir; 2004. 469 p. (Russian).
3. Pechen. In: Petrovskij BV, editor. Bolshaja medicinskaja jenciklopedija. Vol. 19. Moskva: Sovetskaja jenciklopedija; 1982. p.153-191. (Russian).
4. Afanasev JuI, Bazhenov DV, Borovaja TG, Valkovich JeI, Danilov RK, editors. Rukovodstvo po gistologii. Vol. 2. Sankt-Peterburg: Specialnaja literatura; 2011. 511 p. (Russian).
5. Organelle [Internet]. Available from: https://en.wikipedia. org/wiki/Organelle.
6. Alberts B, Brej D, Ljuis Dzh, Rjeff M. Molekuljarnaja biologija kletki. Vol. 2. Moskva: Mir; 1993. 539 p. (Russian).
7. Chu VC, Bhattacharya S, Nomoto A, Lin J, Zaidi SK, Oberley TD, Weinman SA, Azhar S, Huang TT. Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells. PLoS ONE. 2011;6(12):e28551. doi: 10.1371/journal.pone.0028551.
8. Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K. Expression of Hepatitis C Virus Proteins Induces Distinct Membrane Alterations Including a Candidate Viral Replication Complex. J. Virol. 2002;76(12):5974-5984.
9. Romero-Brey I, Bartenschlager R. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses. 2016;8(6):E160. doi: 10.3390/v8060160.
10. Millonig, GA. Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. J. Appl. Phys. 1961;32:1637-1643.
11. Glauert RH. Araldite as embedding medium for electron microscopy. J. Biophys. Biochem. Cytol. 1958;46:409-414.
12. Glauert AM. Fixation, dehydration and embedding of biological specimens. In: Glauert AM, editor. Practical methods in electron microscopy. Vol. 3, pt. 1. Amsterdam: American Elsevier; 1975. 207 p.
13. Watson ML. Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 1958;4(4):475-478.
14. Reynolds ES. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell. Biol. 1963:17;208-212. doi: 10.1083/jcb.17.1.208
15. Andreev VP, Tsyrkunov VM, Kravchuk RI, Kurbat MN. Klinicheskaja citologija pecheni: mitohondrii [Clinical cytology of the liver: mitochondria]. Gepatologija i gastrojenterologija [Hepatology and Gastroenterology]. 2018;2(2):143-154. (Russian).
16. Tsyrkunov VM, Prokopchik NI, Andreev VP, Kravchuk RI. Klinicheskaja morfologija pecheni: distrofii [Сlinical morphology of liver: dystrophies]. Gepatologija i gastrojenterologija [Hepatology and Gastroenterology]. 2017;1(2):140-152. (Russian).
17. Wieczorek A, Stepien PM, Zarebska-Michaluk D, Krol T. Megamitochondria formation in hepatocytes of patient with chronic hepatitis C – a case report. Clin Exp Hepatol. 2017;3(3):6169-6175. doi: 10.5114/ceh.2017.68287.
18. Kim CW, Chang KMi. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol. 2013;19(1):17-25.
19. Dash S, Chava S, Aydin Y, Chandra PK, Ferraric P, Chen W, Balart LA, Wu T, Garry RF. Hepatitis C Virus Infection Induces Autophagy as a Prosurvival Mechanism to Alleviate Hepatic ER-Stress Response. Viruses. 2016;8(5):150. doi: 10.3390/v8050150.
20. Romero-Brey I, Merz A, Chiramel A, Lee J-Y, Chlanda P, Haselman U, Santarella-Mellwig R, Habermann A, Hoppe S, Kallis S, Walther P, Antony C, Krijnse-Locker J, Bartenschlagen R. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8:e1003056. doi: 10.1371/journal.ppat.1003056.
21. Wölk B, Sansonno D, Kräusslich HG. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J. Virol. 2000;74:2293-2304.
22. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 2010;84:10438-10447. doi: 10.1128/JVI.00986-10.
23. Paul D, Madan V, Ramirez O, Bencun O, Stoeck IK, Jirasko V, Bartenschlager R. Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles. J. Virol. 2018;92(4):e01890-1817. doi: 10.1128/JVI.01890-17.
24. Wang H, Tai FW. Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses. 2016;8(5):142. doi: 10.3390/v8050142.
25. Suzuk T. Hepatitis C Virus Replication. Adv. Exp. Med. 2017;997:199-209. doi: 10.1007/978-981-10-4567-7_15.
26. Chatel-Chaix L, Bartenschlager R. Dengue Virus- and Hepatitis C Virus-Induced Replication and Assembly Compartments: the Enemy Inside – Caught in the Web. J. Virol. 2014;88(11):5907-5911.
27. Whitmill AS, Kim S, Rojas V, Gulraiz F, Afreen K, Jair M, Sinqh M, Park IW. Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLos One. 2018;13(8):e0202524. doi: 10.1371/journal.pone.0202524.
28. Lin W, Weinberg EM, Tai AW, Peng LF, Brockman MA, Kim KA, Kim S, Borges CB. HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology. 2008;134(3):803-811. doi: 10.1053/j.gastro.2008.01.005.
29. Tsyrkunov VM, Bushma MI, Legonkova LF. Kordiamin –aktivator processov detoksikacii: jeksperimentalnoe obosnovanie i pervye klinicheskie rezultaty. Nizhegorodskij medicinskij zhurnal. 1991;3:50-55. (Russian).
30. Zavodnik LB, Bushma MI, Lukienko PI, Abakumov GZ, Zverinskij IV, Tsyrkunov VM. Stabilizacija dijetilnikotin-amidom (kordiaminom) gidroksilirujushhej funkcii pecheni krolikov pri otravlenii CCI4 [Stabilization by diethylamide of nicotinic acid (cordiamine) of rabbit liver hydroxylating function in poisoning with CCI4]. Farmakologija i toksikologija [Pharmacology and Toxicology]. 1991;54(4):69-71. (Russian).
31. Zavodnik LB, Lukienko PI, Bushma MI, Shoka AJu, Tsyrkunov VM. Korrekcija dijetilnikotinamidom (kordiaminom) narushenija funkcii monooksigenaznoj sistemy pri tetrahlormetanovom i virusnom gepatitah [Impairments of the monooxygenase system in CC14 and virus-induced hepatitides; corrrection by cordiamine]. Voprosy medicinskoj himii. 1993;39(5):45-47. (Russian).
32. Filatov A. Kompleks Goldzhi: opisanie. In: SYL.ru [Internet]. Available from: http://www.syl.ru/article/162510/mod_kompleks-goldji-opisanie. (Russian).
33. Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T, Richard GM, Kandasamy RK, Meurs EF, Anthonsen MW. Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proc. Natl. Acad. Sci USA. 2017;114(17):E3462-E3471. doi: 10.1073/pnas.1616683114.
34. Feldmann G. Morphologic aspects of hepatic synthesis and secretion of plasma proteins. Prog. Liver Dis. 1979;6:23-41.
35. Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. Word J. Hepatol. 2018;10(2):186-212. doi: 10.4254/wjh.v10.i2.186.
36. Timpe JM, Stamataki Z, Jennings A, Hu K, Farquhar MJ, Harris HJ, Schwarz A, Desombere I, Roels GL, Balfe P, McKeating JA. Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology. 2008;47(1):17-24. doi:10.1002/hep.21959.
37. Cabukusta B. Neefjes J. Mechanisms of lysosomal positioning and movement. Traffic. 2018;19(10):761-769. doi: 10.1111/tra.12587.
38. Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J. Cell Sci. 2016;129(23):4329-4339. doi: 10.1242/jcs.196287.
39. Ballabio A. The awesome lysosome. EMBO Mol. Med. 2016;18(2):73-76. doi: 10.15252/emmm.201505966.
40. Schlegel A, Giddings TH Jr, Ladinsky MS, Kirkegaard K. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J. Virol. 1996;70(10):6576-6588.
41. Novikoff AB, Novikoff PM. Microperoxisomes and peroxisomes in relation to lipid metabolism. Ann. N. Y. Acad. Sci. 1982;386:138-152.